Building Machine Learning Model is fun using Orange

Analytics Vidhya Content Team September 7, 2017

Introduction

With growing need of data science managers, we need tools which take out difficulty from doing data science and make it fun. Not everyone is willing to learn coding, even though they would want to learn / apply data science. This is where GUI based tools can come in handy.

Today, I will introduce you to another GUI based tool – Orange. This tool is great for beginners who wish to visualize patterns and understand their data without really knowing how to code.

In my previous article, I presented you with another <u>GUI based tool</u> <u>KNIME</u>. If you do not want to learn to code but still apply data science, you can try out any of these tools.

By the end of this tutorial, you'll be able to predict which person out of a certain set of people is eligible for a loan with Orange!

Table of Contents:

- 1. Why Orange?
- 2. Setting up your System:
- 3. Creating your first Workflow
- 4. Familiarizing yourself with the basics
 - 1. Problem Statement
 - 2. Importing the data files
 - 3. Understanding the data
- 5. How do you clean your data?
- 6. Training your first model

1. Why Orange?

Orange is a platform built for mining and analysis on a GUI based workflow. This signifies that you do not have to know how to code to be able to work using Orange and mine data, crunch numbers and derive insights.

You can perform tasks ranging from basic visuals to data manipulations, transformations, and data mining. It consolidates all the functions of the entire process into a single workflow.

The best part and the differentiator about Orange is that it has some wonderful visuals. You can try silhouettes, heat-maps, geo-maps and all sorts of visualizations available.

2. Setting up your System

Orange comes built-in with the Anaconda tool if you've previously installed it. If not, follow these steps to download Orange.

Step 1: Go to https://orange.biolab.si and click on Download.

Step 2: Install the platform and set the working directory for Orange to store its files.

Des Visualite Boder Evelues		Wettome to Drange Data M	PG
na name na name name name name name name name name	D	Open	O Receit
Textable Taxtable Prototypes Data Seta	Tores	Coo Remains	der Bartel
	C Doe of status		inte as inserved

This is what the start-up page of Orange looks like. You have options that allow you to create new projects, open recent ones or view examples and get started.

Before we delve into how Orange works, let's define a few key terms to help us in our understanding:

- 1. **A widget** is the basic processing point of any data manipulation. It can do a number of actions based on what you choose in your widget selector on the left of the screen.
- 2. A workflow is the sequence of steps or actions that you take in your

platform to accomplish a particular task.

You can also go to "Example Workflows" on your start-up screen to check out more workflows once you have created your first one.

For now, click on "New" and let's start building your first workflow.

3. Creating Your First Workflow

This is the first step towards building a solution to any problem. We need to first understand what steps we need to take in order to achieve our final goal. After you clicked on "New" in the above step, this is what you should have come up with.

This is your blank Workflow on Orange. Now, you're ready to explore and solve any problem by dragging any widget from the widget menu to your workflow.

4. Familiarising yourself with the basics

Orange is a platform that can help us solve most problems in Data Science today. Topics that range from the most basic visualizations to training models. You can even evaluate and perform unsupervised learning on datasets:

4.1 Problem

The problem we're looking to solve in this tutorial is the practice problem **Loan Prediction** that can be accessed via <u>this link</u> on **Datahack**.

4.2 Importing the data files

We begin with the first and the necessary step to understand our data and make predictions: **importing our data**

Step 1: Click on the "Data" tab on the widget selector menu and drag the widget "File" to our blank workflow.

Step 2: Double click the "File" widget and select the file you want to load into the workflow. In this article, as we will be learning how to solve the practice problem Loan Prediction, I will import the training dataset from the same.

			. 198	
Fis. Switz	No.4.Crisblerov			🗧 🐘 _ 1 🛛 Reited
URL				
-				
Ind instance(s), Data has no tanja	ti featureixi, 2 met manalate	antribute(s)		
Columns (Davidse o				
1 Gender	Si seteportal	Nature	Famale, Male	
t Marted	G categorical	Neture	No. Yes	
F Education	Categorical	Neture	Graduate, Not Graduate	
4 Set, Employ	et 🖬 categorical	Neture	No, Two	
1 Applicanting	. C numera	Neture		
Energiant	. O numeric	Neture		
7 Laankrisus	C numeric	feature		
E Lost, Annua	. @ numeric	Neture		
B Dedt,Hall	ry 🕅 categorical	Neture	0,1	
H Property, Ar	es 🗃 categorical	Neeture	Runal, Semiluitan, Urban	
1 Lean, Status	Categorical	Seature	8.7	
T Lines.D	0.000	insta		
T Departments	0 mm	meta		

Step 3: Once you can see the structure of your dataset using the widget, go back by closing this menu.

Step 4: Now since we have the raw .csv details, we need to convert it to a format we can use in our mining. Click on the dotted line encircling the "File" widget and drag, and then click anywhere in the blank space.

Step 5: As we need a data table to better visualize our findings, we click on the "Data Table" widget.

Step 6: Now double click the widget to visualize your table.

8%													
Eté materices	Ŀ.,	Loss.3D	Describerta	Denser	Married	Eboter	Set Stational	Augitopretropret	Coppetiger Brought	LonAneure	set, theorem, Terr	Creft, Hybert	Property
11 Realizers (2) DN missing values) No bright variable.	£	CP001002		Male	140	Graduate	100	10000	table part	100.000	2000 0000	-	United.
	÷.	LPOD1000	1.	Marte	166	Graduate	100	10000.000	0.000	86.000	200.000	1	1.10
2 meta attributes (1.2% missing	÷.	CPOD9008		trane .	194	Graduana	195	78.83.000	1000 000	150,500	2000.0000	-	Unitern
sature)	E.,	CPORTONS.		Mare	195	Net Graduate	100	2003 000	2,000	And Adda	Land Land		10040
	1.	UP001008		Main	140	Graduate	NO	5417 000	2100	141,000	240,000	1	Under
Terratives .	1	LPODIGTI	1	Mare	THE	Oraduate	786	10017-0000	1044.000	2007 0000	360.000	1	Urben
Show variable labels (# present)	e.,	riodita.		Male	Tes	Net Graduate	10	ATTAC AND	1010.000	and party	Jana Cons	1	17981
	1.	LPOE1014	Ja :	Mate	198	Graduate	10	2008.000	1504.000	198.000	260.000		Services
Color by instance classes	12.1	CPODIOTE	1	Male	745	Oraduate	100	10000-0000	10000 000	100.000	200,000	1	Urban.
		LP001030		Male	Yes	Graduate	No	12941.000	100000.0000	10.000	1000.0000		Benluits
Barbartinet	1	LP001034	1	Male	146	Graduate	10	3000.000	700.000	70.000	2002.0000	1	Under
Select full rows	10	CPODADLIT	3	Male	785	Graduate	(T	2506-008	1640.000	109.000	360.000	1	Underh
	10	CP001028	1	Male	First.	Greebuarte	100	3073.000	8106-000	200,000	3460.0000	8	Unter
	144	LP001028	0	Mala	190	Graduate	Alt .	1853.000	2940.000	114.000	380.000	4	8,74
	19	LP001030	3	Mare	196	Oraduate	No	1189.000	1086.000	17.000	120.000	5	17041
	19.	LP001032	B	Maie	749	Greekunte	No.	4950.000	0.000	126-300	3490.0000	1	Urben
	19.	1.P001034	1	Male	No	Not Graduate	50	3096.000	6.000	100.000	240.000	1	U/ben
	1.0	LP001038	0	Female	190	Oraduate	740	3510.000	6.000	76.000	360.000	0	Urben-
	10	LPOD1038	0	Male	Y85.	Not Graduate	No.	4887.000	0.000	133-500	360.000	1	Burk!
	20	LP001045	0	Male	Yee	Graduate	P.	2000.000	3800.000	115.000	17	8	urber-
	10	LP001043	0	Maria	100	Not Graduate	100	796C-008	5.800	104.000	360.000	0	urber.
	11	1,7001048	1.	Male	Tes.	Graduate	No	\$V61.000	8825.000	\$16,000	360.000	1	Union .
	10	LP001047	6	Mate	190	Not Graduate	144	2600-208	3911.000	116.000	260.000	8	Barriuto
	14	CPODE0568	1	P	748	Not Graduate	No	3345.500	1917.000	112.000	386.000	0	Rune-
	10	LPOD1082	4	Male	Yes.	Greduate	7	30.0.200	29/35.000	161.000	3460.000	7	Seniuris
	28	UPOSTOR8	0	Main	1946	Graduata	144	9980-000	0.800	191,000	3490.000		Seniuto
	10	UPOPHONE.		Male	798	Graduate	141	2798.000	3253.000	123.005	380.000	4	Sensors
	28	0,7001073	3	Main	Tes.	Not Graduate	344	4328-000	1040.000	110.000	360.000	1	Other.
	20	LPOINGES	0	Mate	No	Not Graduate	Net	1442.000	0.000	35.000	360.000	1	UPben .
	100	LPOCTORP	1	Fattale	740	Graduate.		3768.000	3063.000	120.300	360.000	9	Seniuto
	100	LPODIOST	8.	Male	Yes	Graduate	7	4188.000	1368.000	201,000	360.000	1	Union.
	140	LPOITOR8	8	Male	150	Graduate	Sec.	3/47.000	8-808	74.500	360.000	8	Citizet
	100	LP001087	1	Male	140	Oraduate	148	4692.000	5.800	106.000	360.000	4	there.
	14	CPOD1088	0	Male	Tes	Graduate	No.	3900.000	1667.000	114.000	380.000	1	Deniuti
	24	CPOOTIOD	3	Mate	740	Graduate	541	12508-008	3000.000	305.000	3465.000	8	Beat
	1.00	LPOINT	6	Main	Tex	Graduate	141	2275.000	3967,000	+	380.000		urban
	1.00	L PODTION		Mana	Tes	Oraduate	144	1828.000	1330.000	100.000		6	Littless.
	1.84	LINGSTOCK	0	Familie	Ves	Graduate	100	3667.000	1489-000	144.000	360.000	1	Gentuck
Restance Direction Onder	1.00	- POSTVIA		Maria	190	(Inschools)	Aug.	4765.000	7210.000	184.000	380.000		urbat
	1.44	C. BOLTTTRE		Made	100	Mar Paraturate	100	3748.000	1648.000	110.000	360.000		Sec. 1
Report	1.0	L POUTTOR		Marin	100	Graduate	And I	3655.500	0.000	80.000	385.000		Labor.
and the second	12	1. Properties		Marin	100	Orachusta	1	1905.000	1015.080	47.000	360.000	-	Links .
Sand Automobility	12	- Provide State	12.		1.10	distant and	-	Take Mr.	8.845	15.000	1000 0000		

Neat! Isn't it?

Let's now visualize some columns to find interesting patterns in our data.

4.3 Understanding our Data

4.3.1 Scatter Plot

Click on the semicircle in front of the "File" widget and drag it to an empty space in the workflow and select the "Scatter Plot" widget.

Once you create a Scatter Plot widget, double click it and explore your data

like this! You can select the X and Y axes, colors, shapes, sizes and a lot of other manipulations.

The plot I've explored is a Gender by Income plot, with the colors set to the education levels. As we can see in males, the higher income group naturally belongs to the Graduates!

Although in females, we see that a lot of the graduate females are earning low or almost nothing at all. Any specific reason? Let's find out using the scatterplot.

One possible reason I found was marriage. A huge number graduates who were married were found to be in lower income groups; this may be due to family responsibilities or added efforts. Makes perfect sense, right?

4.3.2 Distribution

Another way to visualize our distributions would be the "Distributions"

widget. Click on the semi-circle again, and drag to find the widget "Distributions".

Now double click on it and visualize!

What we see is a very interesting distribution. We have in our dataset, more number of married males than females.

4.3.3 Sieve diagram

How does income relate to the education levels? Do graduates get paid more than non-grads?

Let's visualize using a sieve diagram.

Click and drag from the "File" widget and search for "Sieve Diagram".

Once you place it, double click on it and select your axes!

This plot divides the sections of distribution into 4 bins. The sections can be investigated by hovering the mouse over it.

For example, graduates and non-graduates are divided 78% by 22%. Then

subdivisions of 25% each are made by splitting the applicant incomes into 4 equal groups. Here the task for you, generate insight from these charts and share in the comment section.

Let's now look at how to clean our data to start building our model.

5. How do you clean your data?

Here for cleaning purpose, we will impute missing values. Imputation is a very important step in understanding and making the best use of our data.

Click on the "File" widget and drag to find the "Impute" widget.

When you double click on the widget after placing it, you will see that there are a variety of imputation methods you can use. You can also use default methods or choose individual methods for each class separately.

Perault Method	
O Don't impute	
Average/Most frequent	
As a distinct value	
 Model-based imputer (simple tr 	ee)
Random values	
Remove instances with unknow	n values
dividual Attribute Cattlenes	
norvioual Attribute Settings	
G Gender	O Default (above)
G Married	O Don't impute
C Education	Average/Most frequent
Self_Employed	As a distinct value
N Applicantincome	 Model-based imputer (simple tree)
N Coapplicantincome	Random values
N LoanAmount	Remove instances with unknown values
N Loan_Amount_Term	O Value
Credit_History	
Property_Area	
C Loan Status	Restore All to Default

Here, I have selected the default method to be Average for numerical values and Most Frequent for text based values (categorical).

You can select from a variety of imputations like:

- 1. Distinct Value
- 2. Random Values
- 3. Remove the rows with missing values
- 4. Model-Based

The other things you can include in your approach to training your model are Feature Extraction and Generation.For further understanding, follow this article on Data Exploration and Feature Engineering (https://www.analyticsvidhya.com/blog/2016/01/guide-dataexploration/)

6. Training your First Model

Beginning with the basics, we will first train a linear model encompassing all the features just to understand how to select and build models.

Step 1: First, we need to set a target variable to apply Logistic Regression on it.

Step 2: Go to the "File" widget and double click it.

Step 3: Now, double click on the **Loan_Status** column and select it as the target variable. Click Apply.

Step 4: Once we have set our target variable, find the clean data from the "Impute" widget as follows and place the "Logistic Regression" widget.

Step 5: Double click the widget and select the type of regularization you want to perform.

1. Ridge Regression:

- Performs L2 regularization, i.e. adds penalty equivalent to square of the magnitude of coefficients
- Minimization objective = LS Obj + α * (sum of square of

coefficients)

- 2. Lasso Regression:
 - Performs L1 regularization, i.e. adds penalty equivalent to **absolute value of the magnitude** of coefficients
 - Minimization objective = LS Obj + α * (sum of absolute value of coefficients)

For a better understanding of these, please visit the link about Ridge and Lasso

regressions <u>https://www.analyticsvidhya.com/blog/2016/01/complete-</u> <u>tutorial-ridge-lasso-regression-python/</u>

I have chosen Ridge for my analysis, you are free to choose between the two.

Step 6: Next, click on the "Impute" or the "Logistic Regression" widget and find the "Test and Score" widget. Make sure you connect both the **data and the model to the testing widget.**

Step 7: Now, click on the "Test and Score" widget to see how well your model is doing.

lampling	Evaluation Results						
Cross validation	Method	٣	AUC	CA	F1	Precision	Recall
Number of folds: 10	Logistic Regres	sion	0.760	0.809	0.876	0.792	0.981
Stratified							
Cross validation by feature							
0							
Random sampling							
Repeat train/test: 10 😋							
Training set size: 66 % 😋							
Stratified	3						
Leave one out							
Test on train data							
Test on test data							
arget Class							
(Average over classes)							
Beend							

Step 8: To visualize the results better, drag and drop from the "Test and Score" widget to fin d "Confusion Matrix".

Step 9: Once you've placed it, click on it to visualize your findings!

		Con	fusion Mat	rix		
Learners			P	redicted		
Logistic Regression			N	Y	Σ	
		N	91.2 %	20.8 %	192	
	octual	۷	8.8 %	79.2 %	422	
	4	Σ	91	523	614	
Show						
Proportion of predicted						
Select						
Select Correct						
Select Misclassified						
Clear Selection						
Output						
Predictions Probabilities						
Send Automatically						
Report						

This way, you can test out different models and see how accurately they perform.

Let's try to evaluate, how a Random Forest would do? Change the modeling method to Random Forest and look at the confusion matrix.

		Confi	sion Matri	<(1)		
Learners			P	redicted		
Random Forest			N	Y	Σ	
		N	69.2 %	19.7 %	192	
	ictua	Y	30.8 %	80.3 %	422	
		Σ	143	471	614	
Show						
Proportion of predicted						
Select						
Select Correct						
Select Misclassified						
Clear Selection						
Output						
Predictions Probabilities						
Send Automatically						
Report						

Looks decent, but the Logistic Regression performed better.

We can try again with a Support Vector Machine.

Learners			P	redicted		
SVM			N	Y	5	
		N	76.5 %	20.8 %	192	
	ctual	Y	23.5 %	79.2 %	422	
	Ac	Σ	115	499	614	
Show						
Proportion of predicted						
Select						
Select Correct						
Select Misclassified						
Clear Selection						
Output						
Predictions Probabilities						
Send Automatically						
Report						

Better than the Random Forest, but still not as good as the Logistic Regression model.

Sometimes the simpler methods are the better ones, isn't it?

This is how your final workflow would look after you are done with the complete process.

For people who wish to work in groups, you can also export your workflows and send it to friends who can work alongside you!

	Data	Data Table	/	Evaluation Res
File	S	ave Orange Workflow	/ File	ist & Score
	Save As: Orange1 Tags: Where: Des	ktop	•	
			Cancel Save	
		-	YXY	
	Scatter Plot		Logistic Regression	

The resulting file is of the (.ows) extension and can be opened in any other Orange setup.

End Notes

Orange is a platform that can be used for almost any kind of analysis but most importantly, for beautiful and easy visuals. In this article, we explored how to visualize a dataset. Predictive modeling was undertaken as well, using a logistic regression predictor, SVM, and a random forest predictor to find loan statuses for each person accordingly.

Hope this tutorial has helped you figure out aspects of the problem that you might not have understood or missed out on before. It is very important to understand the data science pipeline and the steps we take to train a model, and this should surely help you build better predictive models soon!

Learn, engage, compete, and get hired!