
Orange Widgets

	Select Columns	Randomize		
	Data Table	Create Class	Image Viewer	Color
	Data Info	Continuize	T Edit Domain	Rank
	Save Data	Discretize	Feature Constructor	Purge Domain
	SQL Table	Transpose	Python Script	Preprocess
	Data Sets	Data Sampler	Paint Data	Outliers
Data	Lie C	Select Rows	Concatenate	Merge Data

Color

Set color legend for variables.

Signals

Inputs:

• Data

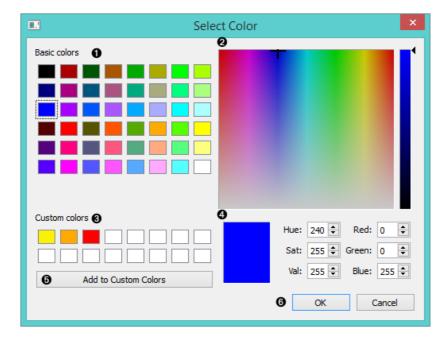
An input data set.

Outputs:

• Data

A data set with a new color legend.

Description


The **Color** widget enables you to set the color legend in your visualizations according to your own preferences. This option provides you with the tools for emphasizing your results and offers a great variety of color options for presenting your data. It can be combined with most visualizations widgets.

®	Color	- 🗆 🗙
Discrete Variables 🜖		
iris Iris-setosa	lris-versicolor	lris-virginica
Numeric Variables 🛛		
sepal length		
sepal width		
petal length		
petal width		
<		>
Report	Apply automatically	y 🕘 Apply

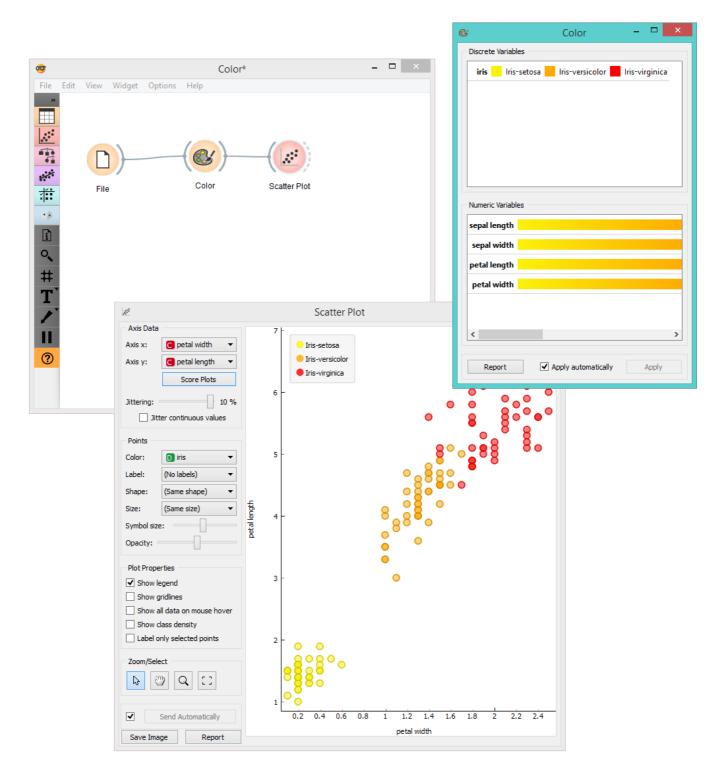
1. A list of discrete variables. You can set the color of each variable by double-clicking on it and opening the *Color palette* or the *Select color* window. The widget also enables text-editing. By clicking on a variable, you can change its name.

- A list of continuous variables. You can customize the color gradients by double-clicking on them. The widget also enables text-editing. By clicking on a variable, you can change its name. If you hover over the right side side of the gradient, *Copy to all* appears. You can then apply your customized color gradient to all variables.
 Produce a report
- 3. Produce a report.
- 4. Apply changes. If *Apply automatically* is ticked, changes will be communicated automatically. Alternatively, just click *Apply*.

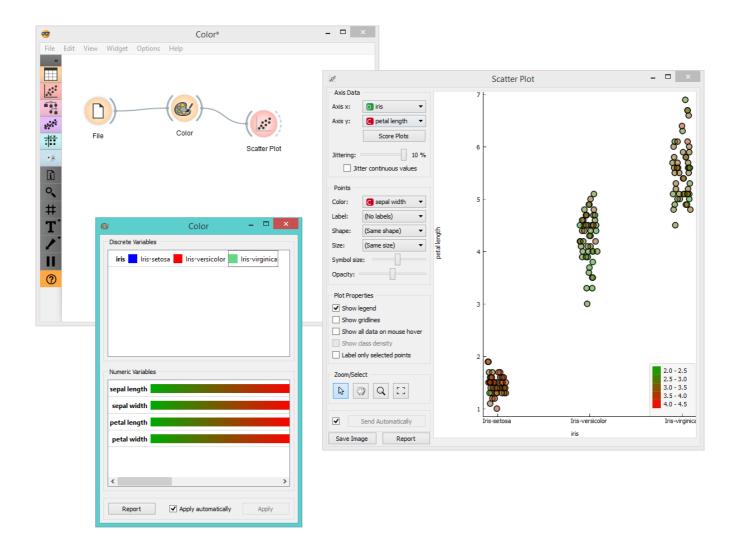
Discrete variables

- 1. Choose a desired color from the palette of basic colors.
- 2. Move the cursor to choose a custom color from the color palette.
- 3. Choose a custom color from your previously saved color choices.
- 4. Specify the custom color by:
 - entering the red, green, and blue components of the color as values between 0 (darkest) and 255 (brightest)
 - entering the hue, saturation and luminescence components of the color as values in the range 0 to 255
- 5. Add the created color to your custom colors.
- 6. Click *OK* to save your choices or *Cancel* to exit the the color palette.

Numeric variables


©.	Color Palette	? ×
- Saved Profiles	0	
Default		•
Gradient palet	te 2	4
Pass throug	gh black 🟮	
6	OK 🕖	Cancel

- 1. Choose a gradient from your saved profiles. The default profile is already set.
- 2. The gradient palette
- 3. Select the left side of the gradient. Double clicking the color opens the *Select Color* window.
- 4. Select the right side of the gradient. Double clicking the color opens the Select Color window.
- 5. Pass through black.


6. Click OK to save your choices or Cancel to exit the color palette.

Example

We chose to work with the *Iris* data set. We opened the color palette and selected three new colors for the three types of Irises. Then we opened the **Scatter Plot** widget and viewed the changes made to the scatter plot.

For our second example, we wished to demonstrate the use of the **Color** widget with continuous variables. We put different types of Irises on the x axis and petal length on the y axis. We created a new color gradient and named it greed (green + red). In order to show that sepal length is not a deciding factor in differentiating between different types of Irises, we chose to color the points according to sepal width.

Concatenate

Concatenates data from multiple sources.

Signals

Inputs:

• Primary Data

A data set that defines the attribute set.

Additional Data

An additional data set.

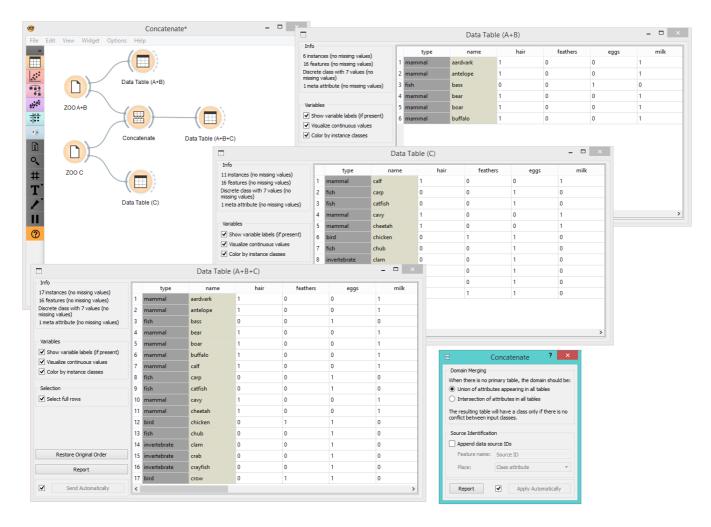
Outputs:

• Data

Description

The widget concatenates multiple sets of instances (data sets). The merge is "vertical", in a sense that two sets of 10 and 5 instances yield a new set of 15 instances.

- 1. Set the attribute merging method.
- 2. Add the identification of source data sets to the output data set.
- 3. Produce a report.
- 4. If Apply automatically is ticked, changes are communicated automatically. Otherwise, click Apply.


If one of the tables is connected to the widget as the primary table, the resulting table will contain its own attributes. If there is no primary table, the attributes can be either a union of all attributes that appear in the tables specified as *Additional Tables*, or their intersection, that is, a list of attributes common to all the connected tables.

Example

As shown below, the widget can be used for merging data from two separate files. Let's say we have two data sets with

the same attributes, one containing instances from the first experiment and the other instances from the second experiment and we wish to join the two data tables together. We use the **Concatenate** widget to merge the data sets by attributes (appending new rows under existing attributes).

Below, we used a modified *Zoo* data set. In the **first** <u>File</u> widget, we loaded only the animals beginning with the letters A and B and in the **second** one only the animals beginning with the letter C. Upon concatenation, we observe the new data in the <u>Data Table</u> widget, where we see the complete table with animals from A to C.

Continuize

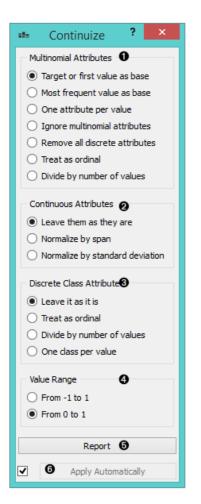
Turns discrete attributes into continuous dummy variables.

Signals

Inputs:

• Data

Input data set

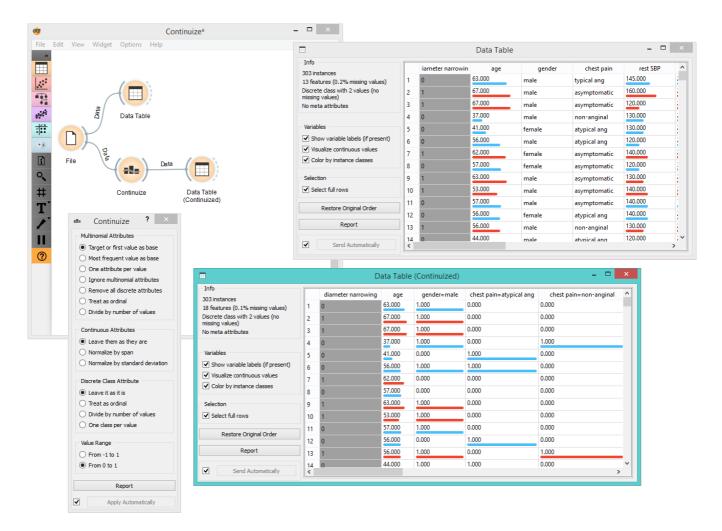

Outputs:

• Data

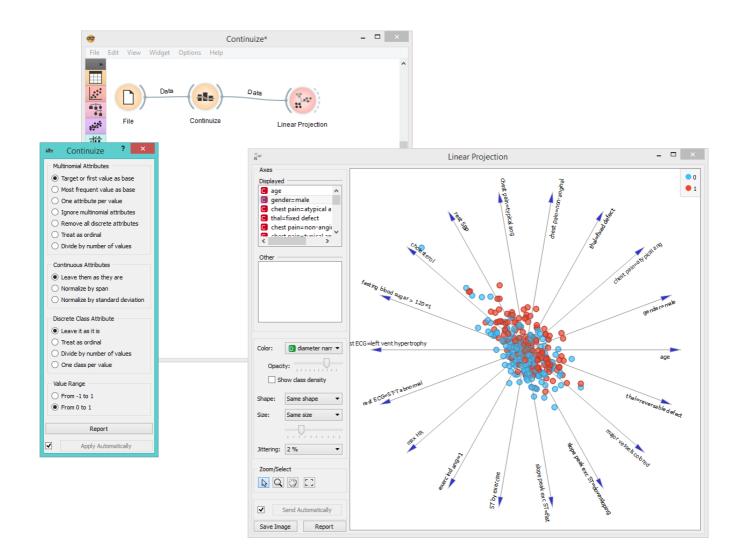
Output data set

Description

The **Continuize** widget receives a data set in the input and outputs the same data set in which the discrete attributes (including binary attributes) are replaced with continuous ones.


- 1. <u>Continuization methods</u>, which define the treatment of multivalued discrete attributes. Say that we have a discrete attribute status with the values low, middle and high, listed in that order. Options for their transformation are:
 - Target or First value as base: the attribute will be transformed into two continuous attributes, sta-

tus=middle with values 0 or 1 signifying whether the original attribute had value middle on a particular example, and similarly, status=high. Hence, a three-valued attribute is transformed into two continuous attributes, corresponding to all except the first value of the attribute.


- **Most frequent value as base**: similar to the above, except that the data is analyzed and the most frequent value is used as a base. So, if most examples have the value middle, the two newly constructed continuous attributes will be status=low and status=high.
- **One attribute per value**: this would construct three continuous attributes out of a three-valued discrete one.
- Ignore multinominal attributes: removes the multinominal attributes from the data.
- **Treat as ordinal**: converts the attribute into a continuous attribute with values 0, 1, and 2.
- **Divide by number of values**: same as above, except that the values are normalized into range 0-1. So, our case would give values 0, 0.5 and 1.
- 2. Define the treatment of continuous attributes. You will usually prefer the *Leave them as they are* option. The alternative is *Normalize by span*, which will subtract the lowest value found in the data and divide by the span, so all values will fit into [0, 1]. Finally, *Normalize by standard deviation* subtracts the average and divides by the deviation.
- 3. Define the treatment of class attributes. Besides leaving it as it is, there are also a couple of options available for multinominal attributes, except for those options which split the attribute into more than one attribute this obviously cannot be supported since you cannot have more than one class attribute.
- 4. With *value range*, you can define the values of new attributes. In the above text, we supposed the range *from o to 1*. You can change it to *from -1 to 1*.
- 5. Produce a report.
- 6. If *Apply automatically* is ticked, changes are committed automatically. Otherwise, you have to press *Apply* after each change.

Examples

First, let's see what is the output of the **Continuize** widget. We feed the original data (the *Heart disease* data set) into the <u>Data Table</u> and see how they look like. Then we continuize the discrete values and observe them in another Data Table.

In the second example, we show a typical use of this widget - in order to properly plot the linear projection of the data, discrete attributes need to be converted to continuous ones and that is why we put the data through the **Continuize** widget before drawing it. The attribute "*chest pain*" originally had four values and was transformed into three continuous attributes; similar happened to gender, which was transformed into a single attribute "*gender=female*".

Create Class

Create class attribute from a string attribute.

Signals

Inputs:

• Data

Attribute-valued data set.

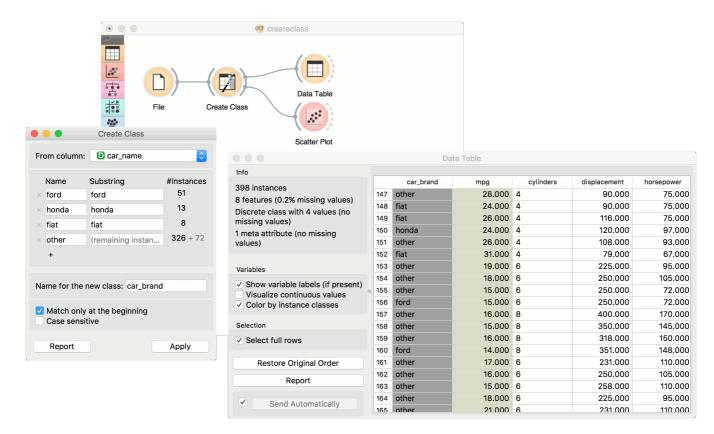
Outputs:

• Data

Attribute-valued data set.

Description

Create Class creates a new class attribute from an existing discrete or string attribute. The widget matches the string value of the selected attribute and constructs a new user-defined value for matching instances.


		Create Class							
Fr	om column:	D iris	0						
	Name	Substring	#Instances						
×	C1	(remaining instan	150						
×	C2	(unused)							
	+								
Na	ame for the I	new class: class							
	Match only at the beginning Case sensitive								
		0	6						
	Report		Apply						

- 1. The attribute the new class is constructed from.
- 2. Matching: Name: the name of the new class value Substring: regex-defined substring that will match the values from the above-defined attribute - Instances: the number of instances matching the substring - Press '+' to add a new class value
- 3. Name of the new class column.
- 4. Match only at the beginning will begin matching from the beginning of the string. Case sensitive will match by case, too.
- 5. Produce a report.
- 6. Press *Apply* to commit the results.

Example

Here is a simple example with the *auto-mpg* data set. Pass the data to **Create Class**. Select *car_name* as a column to create the new class from. Here, we wish to create new values that match the car brand. First, we type *ford* as the new value for the matching strings. Then we define the substring that will match the data instances. This means that all instances containing *ford* in their *car_name*, will now have a value *ford* in the new class column. Next, we define the same for *honda* and *fiat*. The widget will tell us how many instance are yet unmatched (remaining instances). We will name them *other*, but you can continue creating new values by adding a condition with '+'.

We named our new class column car_brand and we matched at the beginning of the string.

Finally, we can observe the new column in a Data Table or use the value as color in the Scatterplot.

Data Info

Displays information on a selected data set.

Signals

Inputs:

• Data

A data set.

Selected Data

A data subset.

Outputs:

• (None)

Description

A simple widget that presents information on data set size, features, targets, meta attributes, and location.

🗈 Data Info 😑 🗆 🗙	
Data Set Size Rows: 150 Variables: 5	
Features Discrete: (none) Numeric: 4)
Targets Discrete outcome with 3 values	•
Meta Attributes	•
Location Data is stored in memory)
Report G)

- 1. Information on data set size
- 2. Information on discrete and continuous features
- 3. Information on targets
- 4. Information on meta attributes
- 5. Information on where the data is stored
- 6. Produce a report.

Example

Below, we compare the basic statistics of two **Data Info** widgets - one with information on the entire data set and the other with information on the (manually) selected subset from the <u>Scatterplot</u> widget. We used the *Iris* data set.

Data Sampler

Selects a subset of data instances from an input data set.

Signals

Inputs:

• Data

Input data set to be sampled.

Outputs:

• Data Sample

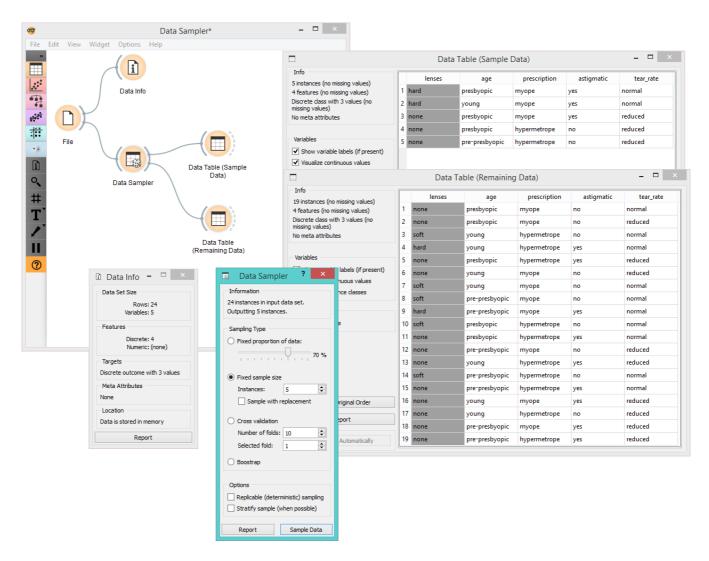
A set of sampled data instances.

• Remaining Data

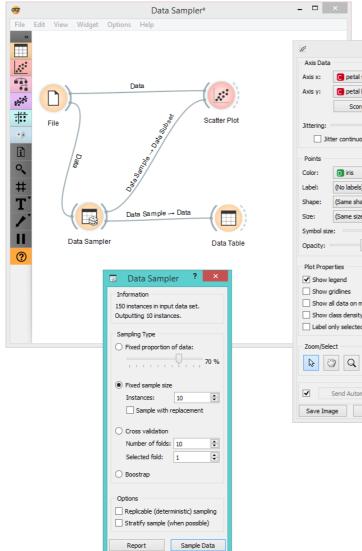
All other data instances from the input data set, which are not included in the sample.

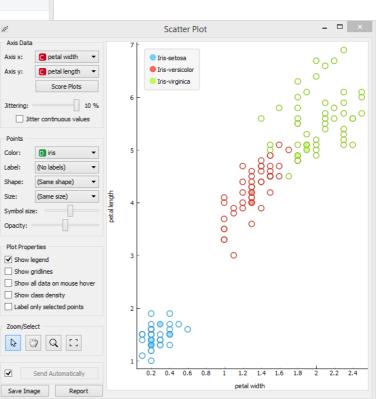
Description

The **Data Sampler** widget implements several means of sampling data from an input channel. It outputs a sampled and a complementary data set (with instances from the input set that are not included in the sampled data set). The output is processed after the input data set is provided and *Sample Data* is pressed.


🗔 Data Sampler ? 🗙
Information 🛛 🕕
150 instances in input data set.
Outputting 105 instances.
Sampling Type 🛛 🛛 🛛
Fixed proportion of data:
70 %
○ Fixed sample size
Instances: 10
Sample with replacement
 Cross validation
Number of folds: 10
Selected fold: 1
○ Boostrap
Options 3
Replicable (deterministic) sampling
Stratify sample (when possible)
Report Sample Data ()

- 1. Information on the input and output data set
- 2. The desired sampling method:


- **Fixed proportion of data** returns a selected percentage of the entire data (e.g. 70% of all the data)
- **Fixed sample size** returns a selected number of data instances with a chance to set *Sample with replacement*, which always samples from the entire data set (does not subtract instances already in the subset)
- Cross Validation partitions data instances into complementary subsets, where you can select the number of folds (subsets) and which fold you want to use as a sample.
- 3. *Replicable sampling* maintains sampling patterns that can be carried across users, while *stratification* mimics the composition of the input data set.
- 4. Produce a report.
- 5. Press *Sample data* to output the data sample.


Examples

First, let's see how the **Data Sampler** works. Let's look at the information on the original data set in the **Data Info** widget. We see there are 24 instances in the data (we used *lenses.tab*). We sampled the data with the **Data Sampler** widget and we chose to go with a fixed sample size of 5 instances for simplicity. We can observe the sampled data in the **Data Table** widget. The second **Data Table** shows the remaining 19 instances that weren't in the sample.

In the workflow below, we have sampled 10 data instances from the *Iris* data set and sent the original data and the sample to <u>Scatter Plot</u> widget for exploratory data analysis. The sampled data instances are plotted with filled circles, while the original data set is represented with empty circles.

Data Sets

Load a data set from an online repository.

Signals

Inputs:

• (None)

Outputs:

• Data

Attribute-valued data set.

Description

Datasets widget retrives selected data set from the server and sends it to the output. File is downloaded to the local memory and thus instantly available even without the internet connection. Each data set is provided with a description and information on the data size, number of instances, number of variables, target and tags.

Info	0	Title		Size	Instances	Variables	Та	rget	Tags	
22 data sets		Iris		4.5 KB	150	5	C	categorical		
3 data sets cached		Kickstarter	р	214.1 KB	1163	15	6 C	categorical		
		Poker Hand		28.9 MB	1025010	10	C	categorical	synthetic	
		Sailing		455 bytes	20	3	С	categorical	tree, synthetic	
		Titanic		44.1 KB	2201	4	С	categorical		
		Traffic acci	d	4.3 MB	17931	18	}		location, date, trai	fi
		Traffic acci	d	2.8 MB	32857	13	}		location, date, trat	fi
		Traffic sign	s	3.8 KB	40	3	С	categorical	images	
		Wine		10.7 KB	178	14	С	categorical		
	•	Wine quality	y	82.2 KB	1599	11	Ν	numeric	wine	
		Wine quality	y	258.1 KB	4898	11	N	numeric	wine	
	C	Description 🚯				•				
	1	Kickstarter pro	oject	t s (2016)						
Send Data	0	records if the pr campaigns start about the web p	rojeo ted f bage	ckstarter project ct was founded. ⁻ from January to <i>i</i> s, like the numbe rediction of succ	The data is on a s April, 2016. Even er of videos and	small sample of though the attr images included	Kick ibute	starter projec es contain ver	cts whose ry basic information	I

- 1. Information on the number of data sets available and the number of them downloaded to the local memory.
- 2. Content of available data sets. Each data set is described with the size, number of instances and variables, type of the target variable and tags.
- 3. Formal description of the selected data set.
- 4. If *Send Data Automatically* is ticked, selected data set is communicated automatically. Alternatively, press *Send Data*.

Example

Orange workflows can start with **Data Sets** widget instead of **File** widget. In the example below, the widget retrieves a data set from an online repository (Kickstarter data), which is subsequently sent to both the <u>Data Table</u> and the <u>Distributions</u>.

					Data Sets				
		Info		Title	ize In	stances	Variables	Target	Tags
		22 data sets	•		50.7 KB	1728		6 C categorical	
		4 data sets cached	•	Illegal waste	2.8 MB	13165		25	location, date, ecology
			•	grades	265 bytes	12		2 👔 None	clustering, small
			•	Kickstarter p	214.1 KB	1163	· ·	15 🖸 categorical	
				Abalone	187.5 KB	4177		8 N numeric	
			De	scription			0		
		<u> </u>		oonpalon					
		=);	к	ckstarter projects	(2016)				
		<u> </u>	B	sic profiling of Kick	starter project pa	ges at the tir	ne of the start o	of the campaign. T	he class label records if
		a Table							campaigns started
X O	Dat	alabie							about the web pages,
						ncluded, it is	surprising that	these are sufficien	t for solid prediction of
20 C	Data Sets 🛛 🛁 🛛	Send Data Au	utomatically su	ccess of the projec	t.				
₱_	Dist	ributions							
		Data Table							
		Data Table							
Info	Funded	URL Title	Year Mon		11				
1163 instances					Has FB				
15 features (no missing values)	1 no	https://www Pixelstart: C 20		Art	1				
Discrete class with 2 values (no	2 no	https://www Smart shop I 20					tributions		
missing values)	3 no	https://www Minimal Hau 20	variable			180			
	4 no	https://www NeoN: Alteri 20	016						no
4 meta attributes (4.0% missing									
4 meta attributes (4.0% missing values)	5 no	https://www Nintendo NE 20					-	_	yes
	5 no 6 no	https://www Nintendo NE 20 https://www Day and Nig 20	D16 C Has	FB		160			• yes
values)			016 C Has	FB ked Projects		160			• yes
values) Variables	6 no	https://www Day and Nig 20	016 C Has 016 N Bac 016 N Pre	FB ked Projects vious Projects		160 140			• yes
values) Variables ✓ Show variable labels (if present)	6 no 7 no	https://www Day and Nig 20 https://www Fund an Art 20	D16 C Has D16 N Bac D16 N Pre D16 N Cree	FB ked Projects vious Projects ator Desc Len					• yes
values) Variables ✓ Show variable labels (if present) Visualize numeric values	6 no 7 no 8 no 9 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20	O16 Image: Hassed state st	FB ked Projects vious Projects ator Desc Len e Len		140 -		.	• yes
values) Variables ✓ Show variable labels (if present)	6 no 7 no 8 no 9 yes 10 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20 https://www Under the H 20	D16 C Has D16 N Bac D16 N Pre D16 N Cre D16 N Cre D16 N Goa D16 N Goa	FB ked Projects vious Projects ator Desc Len e Len I				.	• yes
values) Variables ✓ Show variable labels (if present) Visualize numeric values	6 no 7 no 8 no 9 yes 10 yes 11 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20 https://www Under the H 20 https://www KOKORO 20	Oto C Has D16 N Bac D16 N Pre D16 N Cre D16 N Grad D16 N Grad D16 N Grad D16 N Dur D16 N Dur	FB ked Projects vious Projects ator Desc Len e Len I		140 - 120 -		, I	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection	1 No 6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Under the H 20 https://www KOKORO 20 https://www Draw Cool S 20	D16 G Hat D16 N Bac D16 N Pre D16 N Cre D16 N Go D16 N Dur D16 N Pre D16 N Pre	FB ked Projects vious Projects ator Desc Len e Len I ation		140 - 120 -		ı	• yes
values) Variables ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes	6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20 https://www Under the H 20 https://www KOKOR0 20 https://www Draw Cool S 20 https://www Ellefortheco 20	016 G Has 016 N Bac 016 N Pre 016 N Cre 016 N Title 016 N Go 016 N Go 016 N Go 016 N Di 016 N Di 016 N Pie 016 N Pie 016 N Min 016 N Min	FB ked Projects vious Projects ator Desc Len e Len I ation dge Levels		140 - 120 -		ı	• yes
values) Variables Visualize numeric values Color by instance classes Selection Visualize numeric values Select full rows	1 No 6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20 https://www Once Upon 20 https://www Once Upon 20 https://www Draw Cool S 20 https://www Elleforthecc 20 https://www Elleforthecc 20	016 G Has 016 N Bac 016 N Pre 016 N Titl 016 N Go 016 N Go 016 N Dur 016 N Dur 016 N Min	FB ked Projects vious Projects ator Desc Len b Len l ation dge Levels Pledge Tiers Pledge Tiers		140 - 120 -		ı	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection	6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes	https://www	Dis F Has 006 N Bac 006 N Pre 006 N Cre 006 N Cre 006 N Cre 006 N Cre 006 N Dur 006 N Dur 006 N Min 006 Precision 006 Precision	FB ked Projects vious Projects ator Desc Len b Len l ation dge Levels Pledge Tiers Pledge Tiers		140 - 120 - 100 -		ı	• yes
values) Variables Visualize numeric values Color by instance classes Selection Visualize numeric values Select full rows	No 6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Once Upon 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www For Acool S 20 https://www For Acool S 20 https://www Flefortheco 20 https://www Flefortheco 20 https://www Flefortheco 20 https://www Flore Acool S 20	016 C Has 016 N Bac 016 N Pre 016 N Cre 016 N Cre 016 N Cre 016 N Gra 016 N Dir 016 N Mor 016 N Mor 016 Precision Mor 016 Precision Dir 016 Precision Dir 016 Precision Dir	FB ked Projects vious Projects ator Desc Len b Len l ation dge Levels Pledge Tiers Pledge Tiers	50	140 - 120 -		ı	• yes
values) ✓ Show variable labels (if present) ✓ Show variable labels (if present) ✓ Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order	No 6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Trump that 20 https://www Once Upon 20 https://www Once Upon 20 https://www Not KORO 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www To Apparel 20 https://www The Little AB 20 https://www The Little AB 20 https://www The Little AB 20 https://www Burl & Fur 20	016 C Has 016 N Bac 016 N Pre 016 N Cre 016 N Cre 016 N Gre 016 N Dire 016 N Dire 016 N Pie 016 N Man 016 N Man 016 Precision One 016 2 Con 016 2 Con	FB ked Projects vious Projects ator Desc Len b Len di dige Levels Pledge Tiers Pledge Tiers	50	140 - 120 - 100 - 80 -		I	• yes
values) ✓ Show variable labels (if present) ✓ Show variable labels (if present) ✓ Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 C Has 006 N Bac 0016 N Pre 0016 N Pre 0016 N Trit 0016 N Trit 0016 N Dir 0016 N Dir 0016 N Min 0016 Precision Dir 0016 2	FB ked Projects vious Projects ator Desc Len b Len l ation dge Levels Pledge Tiers Pledge Tiers	50	140 - 120 - 100 - 80 - 60 -		I	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 6 no 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trump that 20 https://www Trump that 20 https://www Once Upon 20 https://www Once Upon 20 https://www Not KORO 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www Elleforthecc 20 https://www To Apparel 20 https://www The Little AB 20 https://www The Little AB 20 https://www The Little AB 20 https://www Burl & Fur 20	016 C Has 016 N Back 016 N Pre 016 N Cre 016 N Cre 016 N Cre 016 N Back 016 N Mark 016 N Mark 016 Precision Mark 016 Precision Mark 016 Bin Mark 016 Bin Bin	FB ked Projects vious Projects ator Desc Len p b Len l ation gg Levels Pledge Tiers - Diadao Tiere	50	140 - 120 - 100 - 80 -		l	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 C Has 006 N Bac 0016 N Pre 0016 N Pre 0016 N Trit 0016 N Trit 0016 N Dir 0016 N Dir 0016 N Min 0016 Precision Dir 0016 2	FB ked Projects vious Projects ator Desc Len p b Len l ation gg Levels Pledge Tiers - Diadao Tiere	50	140 120 5000 80 60 40		l	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 C Has 016 N Bac 016 N Pre 016 N Cre 016 N Cre 016 N Cre 016 N Group by	FB ked Projects vious Projects ator Desc Len b Len tation ge Levels Pledge Tiers - Pledge Tiers	50 to 10 bins	140 - 120 - 100 - 80 - 60 -		l	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 G Has 016 N Bac 016 N Pre 016 N Cre 016 N Fre 016 N Group by 016 N Min 016 S Min 016 S Min 016 S Min 016 S Min 016 Bin Bin 016 Bin Bin 016 Fur Fur	FB ked Projects vious Projects ator Desc Len b Len i i ation Piedge Tiers Piedge Tiers Piedge Tiers Piedge Tiers Autor Discourse Autor Discour	50 to 10 bins	140 120 5000 80 60 40		l	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 G Has 016 N Bac 016 N Pre 016 N Cre 016 N Fre 016 N Group by 016 N Min 016 S Min 016 S Min 016 S Min 016 S Min 016 Bin Bin 016 Bin Bin 016 Fur Fur	FB ked Projects vious Projects ator Desc Len b Len tation ge Levels Pledge Tiers - Pledge Tiers	50 to 10 bins	140 120 5000 80 60 40		l	• yes
values) ✓ Show variable labels (if present) Visualize numeric values ✓ Color by instance classes Selection ✓ Select full rows Restore Original Order Report	No 7 no 8 no 9 yes 10 yes 11 yes 12 yes 13 yes 14 yes 15 yes 16 yes 17 yes	https://www Day and Nig 20 https://www Fund an Art 20 https://www Trum pt hat 20 https://www Trum pt hat 20 https://www Once Upon 20 https://www Once Upon 20 https://www Vnder the H 20 https://www KOKORO 20 20 https://www Fleforthecc 20 https://www Flefortheca 20 https://www The Little AB 20 https://www Burl & Fur 20 https://www Pend & Sur 20	016 G Has 016 N Bac 016 N Pre 016 N Triti 016 N Triti 016 N Triti 016 N Mino 016 S Mino 016 S Bin 016 Group by Group by	FB ked Projects vious Projects ator Desc Len b Len i i ation Piedge Tiers Piedge Tiers Piedge Tiers Piedge Tiers Autor Discourse Autor Discour	50 to 10 bins es	140 - 120 - 100 - 80 - 40 - 20 - 0 -		Crafts Design	• yes

Save Image Report

Data Table

Displays attribute-value data in a spreadsheet.

Signals

Inputs:

• Data

Attribute-valued data set.

Outputs:

Selected Data

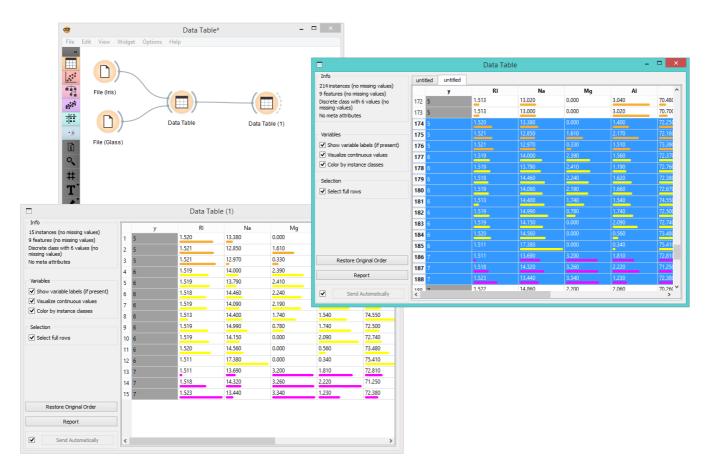
Selected data instances.

Description

The **Data Table** widget receives one or more data sets in its input and presents them as a spreadsheet. Data instances may be sorted by attribute values. The widget also supports manual selection of data instances.

	0		Data Table				×
Info Q	unti	tled untitled					
150 instances (no missing values) 4 features (no missing values)		iris	sepal length	sepal width	petal length	petal width	^
Discrete class with 3 values (no	111	lris-virginica	6.500	3.200	5.100	2.000	
missing values) No meta attributes	117	lris-virginica	6.500	3.000	5.500	1.800	
to meta ata ibates	148	lris-virginica	6.500	3.000	5.200	2.000	
Variables 🚯	59	lris-versicolor	6.600	2.900	4.600	1.300	
✓ Show variable labels (if present)	76	lris-versicolor	6.600	3.000	4.400	1.400	
 Visualize continuous values 	66	lris-versicolor	6.700	3.100	4.400	1.400	
 Color by instance classes 	78	lris-versicolor	6.700	3.000	5.000	1.700	
Selection 4	87	lris-versicolor	6.700	3.100	4.700	1.500	
✓ Select full rows	109	lris-virginica	6.700	2.500	5.800	1.800	
	125	lris-virginica	6.700	3.300	5.700	2.100	
	141	lris-virginica	6.700	3.100	5.600	2.400	
	145	lris-virginica	6.700	3.300	5.700	2.500	
	146	lris-virginica	6.700	3.000	5.200	2.300	
	77	lris-versicolor	6.800	2.800	4.800	1.400	- 1
	113	lris-virginica	6.800	3.000	5.500	2.100	
Restore Original Order 🚯	144	lris-virginica	6.800	3.200	5.900	2.300	
Report 0	53	lris-versicolor	6.900	3.100	4.900	1.500	
Cond Automatically	121	lris-virginica	6.900	3.200	5.700	2.300	
 Send Automatically 							~

- 1. The name of the data set (usually the input data file). Data instances are in rows and their attribute values in columns. In this example, the data set is sorted by the attribute "sepal length".
- 2. Info on current data set size and number and types of attributes
- 3. Values of continuous attributes can be visualized with bars; colors can be attributed to different classes.
- 4. Data instances (rows) can be selected and sent to the widget's output channel.


- 5. Use the Restore Original Order button to reorder data instances after attribute-based sorting.
- 6. Produce a report.
- 7. While auto-send is on, all changes will be automatically communicated to other widgets. Otherwise, press *Send Selected Rows*.

Example

We used two <u>File</u> widgets to read the *Iris* and *Glass* data set (provided in Orange distribution), and send them to the **Data Table** widget.

Selected data instances in the first **Data Table** are passed to the second **Data Table**. Notice that we can select which data set to view (iris or glass). Changing from one data set to another alters the communicated selection of data instances if *Commit on any change* is selected.

Discretize

Discretizes continuous attributes from an input data set.

Signals

Inputs:

• Data

Attribute-valued data set.

Outputs:

• Data

A data set with discretized values.

Description

The **Discretize** widget discretizes continuous attributes with a selected method.

Discretize	? ×
Num, of intervals; 3	Leave numeric Entropy-MDL discretization Equal-frequency discretization
< >	
Report	lly Apply

1. The basic version of the widget is rather simple. It allows choosing between three different discretizations.

- Entropy-MDL, invented by Fayyad and Irani is a top-down discretization, which recursively splits the attribute at a cut maximizing information gain, until the gain is lower than the minimal description length of the cut. This discretization can result in an arbitrary number of intervals, including a single interval, in which case the attribute is discarded as useless (removed).
- <u>Equal-frequency</u> splits the attribute into a given number of intervals, so that they each contain approximately the same number of instances.
- <u>Equal-width</u> evenly splits the range between the smallest and the largest observed value. The *Number of intervals* can be set manually.
- $\circ~$ The widget can also be set to leave the attributes continuous or to remove them.

2. To treat attributes individually, go to **Individual Attribute Settings**. They show a specific discretization of each attribute and allow changes. First, the top left list shows the cut-off points for each attribute. In the snap-shot, we used the entropy-MDL discretization, which determines the optimal number of intervals automatically; we can see it discretized the age into seven intervals with cut-offs at 21.50, 23.50, 27.50, 35.50, 43.50, 54.50 and 61.50, respectively, while the capital-gain got split into many intervals with several cut-offs. The final weight (fnlwgt), for instance, was left with a single interval and thus removed.

On the right, we can select a specific discretization method for each attribute. Attribute *"fnlwgt"* would be removed by the MDL-based discretization, so to prevent its removal, we select the attribute and choose, for instance, **Equal-frequency discretization**. We could also choose to leave the attribute continuous.

- 3. Produce a report.
- 4. Tick Apply automatically for the widget to automatically commit changes. Alternatively, press Apply.

Example

In the schema below, we show the *Iris* data set with continuous attributes (as in the original data file) and with discretized attributes.

	ew Widget Options	5 Help				Data Table			
>>			Info		iris	sepal length	sepal width	petal length	petal width
			150 instances (no missing values) 4 features (no missing values)	1	Iris-setosa	5.100	3.500	1.400	0.200
	Do	Data	Discrete class with 3 values (no	2	lris-setosa	4.900	3.000	1.400	0.200
		Data Table	missing values) No meta attributes	3	Iris-setosa	4.700	3.200	1.300	0.200
ينجنون				4	lris-setosa	4.600	3.100	1.500	0.200
File			Variables	5	lris-setosa	5.000	3.600	1.400	0.200
	Data		Show variable labels (if present)	6	lris-setosa	5.400	3.900	1.700	0.400
R			Visualize continuous values	7	Iris-setosa	4.600	3.400	1.400	0.300
		Data (Color by instance classes	8	Iris-setosa	5.000	3.400	1.500	0.200
0			Selection	9	Iris-setosa	4.400	2.900	1.400	0.200
			Select full rows	10	Iris-setosa	4.900	3.100	1.500	0.100
#	Discretiz	e Data Table (1)		11	Iris-setosa	5.400	3.700	1.500	0.200
T			Restore Original Order	12	lris-setosa	4.800	3.400	1.600	0.200
A *	D 1	? ×	Report	13	lris-setosa	4.800	3.000	1.400	0.100
	Discretize								0.100
qual-frequency discreti	ization CLear	ve numeric ropy-MDL discretization	Send Automatically	14 <	lris-setosa	4.300 Data Table (1)	3.000	1.100	
ault Discretization iqual-frequency discreti ium. of intervals: 3	ization CLear Entr Rem				lris-setosa			1.100	:
iqual-frequency discreti	ization CLear Entr Rem	opy-MDL discretization			iris	Data Table (1) sepal length	sepal width	petal length	– 🗆 petal width
qual-frequency discreti	ization Lear	opy-MDL discretization	Info 150 instances (no missing values) 4 features (no missing values)			Data Table (1)			
qual-frequency discreti lum. of intervals: 3 qual-width discretizatio	ization Lea Entr Rem I S	opy-MDL discretization	Info 150 instances (no missing values)	<	iris	Data Table (1) sepal length	sepal width	petal length	– 🗆 petal width
qual-frequency discreti um. of intervals: 3 qual-width discretizatio ridual Attribute Settings sepal length: 5.55, 6.1 sepal width: 2.95, 3.33	ization Lear P P P P P P P P P P P P P P P P P P P	ropy-MDL discretization nove numeric variables	Info 150 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no	1	iris Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35	petal length < 2.45	petal width
ual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; epal length: 5.55, 6.1. epal vidth: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 55 55	opy-MDL discretization nove numeric variables	Info 150 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no missing values) No meta attributes	< 1 2 3 4	iris Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55 < 5.55	sepal width ≥ 3.35 2.95 - 3.35	petal length < 2.45 < 2.45	
ual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting epal length: 5.55, 6.1 epal width: 2.95, 3.3' etal length: 2.45, 4.7	ization lear Entr Rem Is 55 55	opy-MDL discretization nove numeric variables	Info 150 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no missing values) No meta attributes Variables	< 1 2 3 4 5	iris Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55 < 5.55 < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35	petal length < 2.45 < 2.45 < 2.45 < 2.45	
ual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; epal length: 5.55, 6.1. epal vidth: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization nove numeric variables Default Leave numeric Entropy-MDL discretization Equal-width discretization	Info 150 instances (no missing values) 4 features (no missing values) Discrete dass with 3 values (no missing values) No meta attributes Variables Variables Variables Show variable labels (if present)	< 1 2 3 4 5 6	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55 < 5.55 < 5.55 < 5.55 < 5.55 < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35	petal length < 2.45 < 2.45 < 2.45 < 2.45 < 2.45	petal width < 0.8
ual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; epal length: 5.55, 6.1. epal vidth: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization iove numeric variables Default Leave numeric Entropy-MDL discretization Equal-width discretization Requeries of theorem Num. of intervals: S \$	Info 150 instances (no missing values) 4 features (no missing values) Discrete dass with 3 values (no missing values) No meta attributes Variables Variables Variables Variables (if present) V Visualize continuous values	 1 2 3 4 5 6 7 	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35	petal length < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45	petal width < 0.8
qual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; sepal length: 5.55, 6.1; sepal width: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization nove numeric variables Default Leave numeric Entropy-MDL discretization Equal-width discretization	Info Info 150 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no missing values) No met a attributes Variables Variables Variables Variables Color by instance classes	 1 2 3 4 5 6 7 8 	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35	petal length < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45 < 2.45	petal width < 0.8
qual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; sepal length: 5.55, 6.1; sepal width: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization iove numeric variables Default Leave numeric Entropy-MDL discretization Equal-width discretization Requeries of theorem Num. of intervals: S \$	Info Info 150 instances (no missing values) 4 features (no missing values) Discrete dass with 3 values (no missing values) No meta attributes Variables Variables Variables Variables Visualize continuous values Color by instance dasses Selection	1 1 2 3 4 5 6 6 7 8 9	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 < 2.95	petal length < 2.45 < 2.45	petal width < 0.8
qual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; sepal length: 5.55, 6.1; sepal width: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization iove numeric variables Default Leave numeric Entropy-MDL discretization Equal-width discretization Requeries of theorem Num. of intervals: S \$	Info Info 150 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no missing values) No met a attributes Variables Variables Variables Variables Color by instance classes	 1 2 3 4 5 6 7 8 9 10 	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 ≥ 3.35 < 2.95 ≥ 3.35 < 2.95 ≥ 3.35	petal length < 2.45 < 2.45	petal width < 0.8
qual-frequency disoreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting: sepal length: 5.55, 6.1 sepal width: 2.95, 3.33 oetal length: 2.45, 4.7 petal width: 0.80, 1.75	ization Lear e Entr Ren in s 15 5 5 5	opy-MDL discretization nove numeric variables	Info Info 150 instances (no missing values) 4 features (no missing values) Discrete dass with 3 values (no missing values) No meta attributes Variables Variables Variables Variables Visualize continuous values Color by instance dasses Selection	 1 2 3 4 5 6 7 8 9 10 11 	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35	petal length < 2.45 < 2.45	petal width < 0.8
qual-frequency discreti um. of intervals: 3 qual-width discretizatio idual Attribute Setting; sepal length: 5.55, 6.1; sepal width: 2.95, 3.3; setal length: 2.45, 4.7	ization lear Entr Rem Is 5 5 5 5 5	opy-MDL discretization nove numeric variables	Info Info Is0 instances (no missing values) 4 features (no missing values) Discrete class with 3 values (no missing values) No meta attributes Variables Variables Variables Variable labels (if present) Visualize continuous values Color by instance classes Selection Selection Restore Original Order	1 2 3 4 5 6 7 8 9 10 11 11 12	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35	petal length < 2.45 < 2.45	petal width < 0.8
qual-frequency discreti um. of intervals: 3 qual-width discretizatio ridual Attribute Setting sepal length: 5.55, 6.1 sepal width: 2.95, 3.3 petal length: 2.45, 4.7 petal length: 2.45, 4.7 petal width: 0.80, 1.79	ization Lear e Entr Ren in s 15 5 5 5	opy-MDL discretization nove numeric variables	Info Info Iso instances (no missing values) 4 features (no missing values) 0 bisrete class with 3 values (no missing values) No meta attributes Variables ✓ Variables ✓ Show variable labels (if present) ✓ Visualize continuous values ✓ Color by instance classes Selection ✓ Select full rows	 1 2 3 4 5 6 7 8 9 10 11 	iris Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa	Data Table (1) sepal length < 5.55	sepal width ≥ 3.35 2.95 - 3.35 2.95 - 3.35 ≥ 3.35	petal length < 2.45 < 2.45	petal width < 0.8

Edit Domain

Signals

Inputs:

• Data

An input data set

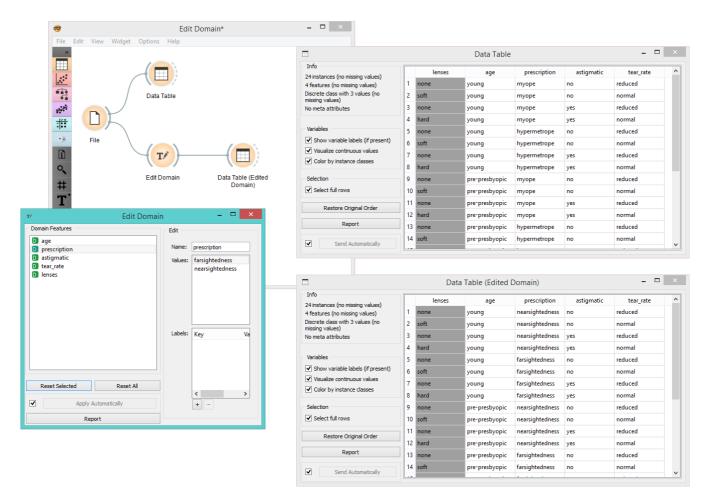
Outputs:

• Data

An edited output data set

Description

This widget can be used to edit/change a data set's domain.


τ/	Edit Do	omain		- 🗆 🗙
Domain Features	Edit Name:	prescription		0
 prescription astigmatic tear_rate lenses 	Values:			
	Labels:	Key	Value	
Reset Selected Reset All		+ -		
Apply 3 Report 3				

- 1. All features (including meta attributes) from the input data set are listed in the *Domain Features* list in the box on the left. Selecting one feature displays an editor on the right.
- 2. The name of the feature can be changed in the *Name* line edit. For *Discrete* features, value names can also be changed in the *Values* list box. Additonal feature annotations can be added/removed/edited in the *Labels* box. To add a new label, click the "+" button and add the *Key* and *Value* columns for the new entry. Selecting an existing label and pressing "-" will remove the annotation.

- 3. To revert the changes made to the feature, press the *Reset Selected* button in the *Reset* box while the feature is selected in the *Domain Features* list. Pressing *Reset All* will reset all features in the domain at the same time.
- 4. Pressing the *Apply* button will send the changed domain data set to the output channel.

Example

Below, we demonstrate how to simply edit an existing domain. We selected the *lenses.tab* data set and edited the *perscription* attribute. Where in the original we had the values *myope* and *hypermetrope*, we changed it into *nearsightedness* and *farsightedness* instead. For an easier comparison, we fed both the original and edited data into the <u>Data Table</u> widget.

Feature Constructor

Add new features to your data set.

Signals

Inputs:

• Data

A data set

Outputs:

• Data

A modified data set

Description

The **Feature Constructor** allows you to manually add features (columns) into your data set. The new feature can be a computation of an existing one or a combination of several (addition, subtraction, etc.). You can choose what type of feature it will be (discrete, continuous or string) and what its parameters are (name, value, expression). For continuous variables you only have to construct an expression in Python.

I	Feature Constructor		- 🗆 🗙
Variable Definitions			
❷ New ▼ Petal length square ⑧	petal_length**2		4
Remove	Select Feature 🔹	Select Function	• 0
Petal length square := petal_length**2			
sep length smaller := 0 if sepal_length < 6 els	se 1 if sepal_length < 7 else 2		
·			
Report			Send 🚯

- 1. List of constructed variables
- 2. Add or remove variables.
- 3. New feature name
- 4. Expression in Python
- 5. Select a feature.
- 6. Select a function.
- 7. Produce a report.
- 8. Press Send to communicate changes.

For discrete variables, however, there's a bit more work. First add or remove the values you want for the new feature. Then select the base value and the expression. In the example below, we have constructed an expression with 'if lower than' and defined three conditions; the program ascribes o (which we renamed to lower) if the original value is lower than 6, 1 (mid) if it is lower than 7 and 2 (higher) for all the other values. Notice that we use an underscore for the feature name (e.g. petal_length).

1.		Feature Constructor		_ 🗆 🗙				
Variable Definitions								
😧 New 🔻	sep length smaller 🚯	0 if sepal_length < 6 else 1 if sepal_length < 7 else 2						
Remove	0	Select Feature 👻	Select Function	- 0				
	Values 0	lower, mid, higher						
sep length smalle	r := 0 if sepal_length < 6 els	e 1 if sepal_length < 7 else 2						
3 Report			0	Send				

- 1. List of variable definitions
- 2. Add or remove variables
- 3. New feature name
- 4. Expression in Python
- 5. Select a feature.
- 6. Select a function.
- 7. Assign values.
- 8. Produce a report.
- 9. Press Send to communicate changes.

Example

With the **Feature Constructor** you can easily adjust or combine existing features into new ones. Below, we added one new discrete feature to the *Titanic* data set. We created a new attribute called *Financial status* and set the values to be *rich* if the person belongs to the first class (status = first) and *not rich* for everybody else. We can see the new data set with <u>Data Table</u> widget.

			Constructor*		- • ×							
File Edit View Widget Options Help					Data Table							
_	Info				survived							
	1				2201 instances (no missing va		313	ves	status first	age adult	sex female	
4	:				3 features (no missing values) Discrete class with 2 values (n			ves	first	adult	female	
	è.	Data Table			missing values)		315	ves	first	adult	female	- 1
5		Y	No meta attributes Variables			316 no 317 no		first	adult	female		
87 		5						first				
र्	File				Show variable labels (if pr	esent)		no	first	adult	female female	
•					Visualize continuous value			no				
6					Color by instance classes				first	adult	female	
0		Feature Constructor	Data Table (New)		Selection			yes	first	child	male	
					Selection Select full rows			yes				
+					Select full rows			yes	first	child	male	
1	1				Restore Original Orde	r		yes	first	child	male	
	. *				Report			yes	first	child	male	
Feature Constructor -					Send Automatically			yes	first		female	
							326	yes	second		male	
New Financial stat		0 if status=="first" else 1										
new • Financial stat	5											_
Remove		Select Feature Select F	unction 👻					Data Tab	le (New)			
Values		rich, not rich		Info			surv	ived st	atus	age	sex Fi	nancial status
Financial status := 0 if status=='	first" else 1				instances (no missing values) tures (no missing values)	320	yes	first	child	male	rich	
				Discre	te class with 2 values (no	321	ves	first	child	male	rich	h
					ig values) eta attributes	322	ves	first	child	male	rich	
						323	ves	first	child	male	ric	
				Varia	bles	324	yes	first	child	male	rich	
				√ s	now variable labels (if present)	325	ves	first	child	female		
					sualize continuous values	326	ves	second	adult	male		t rich
				 C 	olor by instance classes	327	yes	second		male		t rich
				Sele	tion	328	ves	second		male		t rich
					elect full rows	329	yes	second		male		t rich
						330	yes	second		male		t rich
					Restore Original Order	331	ves	second		male		t rich
					Report	332	ves	second		male		t rich
						332	, es	second	adult	male	no	e rosti
						333	yes	second	adult	male		t rich

Hints

If you are unfamiliar with Python math language, here's a quick introduction.

- +, to add, subtract
- * to multiply
- / to divide
- % to divide and return the remainder
- ** for exponent (for square root square by 0.5)
- // for floor division
- <, >, <=, >= less than, greater than, less or equal, greater or equal
- == for equal
- != for not equal

As in the example: (value) if (feature name) < (value), else (value) if (feature name) < (value), else (value)

[Use value 1 if feature is less than specified value, else use value 2 if feature is less than specified value 2, else use value 3.]

See more here.

File

Reads attribute-value data from an input file.

Signals

Inputs:

• (None)

Outputs:

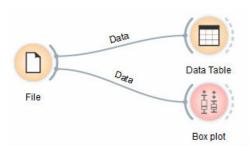
• Data

Attribute-valued data from the input file

Description

The **File** widget <u>reads the input data file</u> (data table with data instances) and sends the data set to its output channel. The history of most recently opened files is maintained in the widget. The widget also includes a directory with sample data sets that come pre-installed with Orange.

The widget reads data from Excel (.xlsx), simple tab-delimited (.txt), comma-separated files (.csv) or URLs.


D		F	ile	- 🗆 🗙
● File: iris.tab ①			•	🛛 길 😒 Reload 🕄
				¥
Info () 150 instance(s), 4 fea Classification; discrete	ature(s), 0 meta attri e dass with 3 values.	bute(s)		
Columns (Double click	to edit) 🚯			
1 sepal length	C numeric	feature		
2 sepal width	C numeric	feature		
3 petal length	C numeric	feature		
4 petal width	C numeric	feature		
5 iris	D nominal	target	lris-setosa, lris-vers	icolor, Iris-virginica
Browse documentation	data sets 👔			8 Report
	•			• · · · · · · · · · · · · · · · · · · ·

- 1. Browse through previously opened data files, or load any of the sample ones.
- 2. Browse for a data file.
- 3. Reloads currently selected data file.
- 4. Insert data from URL adresses. including data from Google Sheets.

- 5. Information on the loaded data set: data set size, number and types of data features.
- 6. Additional information on the features in the data set. Features can be edited by double-clicking on them. The user can change the attribute names, select the type of variable per each attribute (*Continuous, Nominal, String, Datetime*), and choose how to further define the attributes (as *Features, Targets* or *Meta*). The user can also decide to ignore an attribute.
- 7. Browse documentation data sets.
- 8. Produce a report.

Example

Most Orange workflows would probably start with the **File** widget. In the schema below, the widget is used to read the data that is sent to both the <u>Data Table</u> and the <u>Box Plot</u> widget.

Loading your data

- Orange can import any comma, .xlsx or tab-delimited data file or URL. Use the <u>File widget</u> and then, if needed, select class and meta attributes.
- To specify the domain and the type of the attribute, attribute names can be preceded with a label followed by a hash. Use c for class and m for meta attribute, i to ignore a column, and C, D, S for continuous, discrete and string attribute types. Examples: C#mpg, mS#name, i#dummy. Make sure to set **Import Options** in <u>File</u> widget and set the header to **Orange simplified header**.
- Orange's native format is a tab-delimited text file with three header rows. The first row contains attribute names, the second the type (**continuous**, **discrete** or **string**), and the third the optional element (**class**, **meta** or **string**).

X∎	E 5 . 0	⇒		sample-head.xl	sx - Excel		? 🛧	- 🗆	×
FI	LE HOME	INSERT	PAGE LAYOUT	FORMULAS	DATA F	REVIEW VIEW	ADD-INS	TEAM	Þ
A1	Ŧ	: X 🗸	f_x mD#	function					¥
	Α	В	С	D	E	F	G	Н	
1	mD#function	mS#gene	spo-early	spo-mid	c#heat 0	i#heat 10	i#heat 20		
2	Proteas	YDR427W	0.301	0.546		-0.009	0.024		
3	Proteas	YGL048C	0.208		-0.061	-0.039	0.003		
4	Resp	YBR039W	-0.179	-0.219	-0.097		-0.011		
5	Ribo	YKL180W	-0.085	-0.161	-0.061	-0.265	-0.419		
6	Ribo	YHR021C	-0.216	-0.253	-0.228	-0.168	-0.228		
7	Resp	YDR178W	0.017	0.07	0.058	0.286	0.205		
8	Resp	YLL041C	0.115		0.033	0.262	0.054		
9	Resp	YOR065W	0.005	-0.023	-0.038	0.222	0.088		
10									
11									
12									
13									
	() (Untitled.tab	÷		•				_
REA	DY					▣ ▣ -·		- + 100 s	%

Read more on loading your data here.

Image Viewer

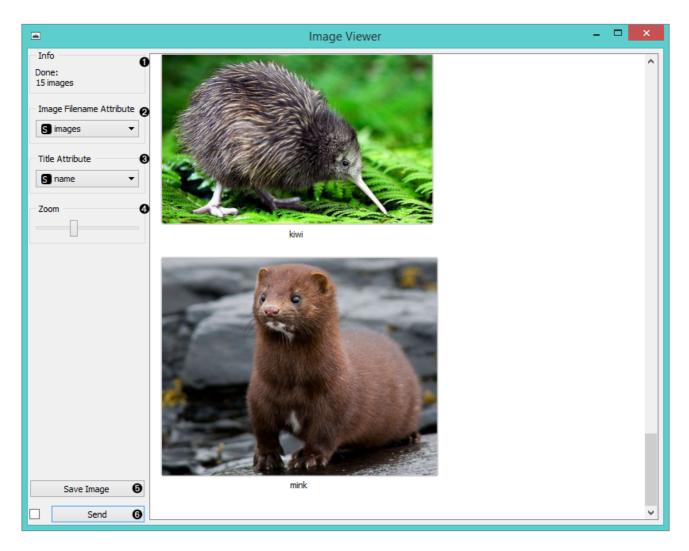
Displays images that come with a data set.

Signals

Inputs:

• Data

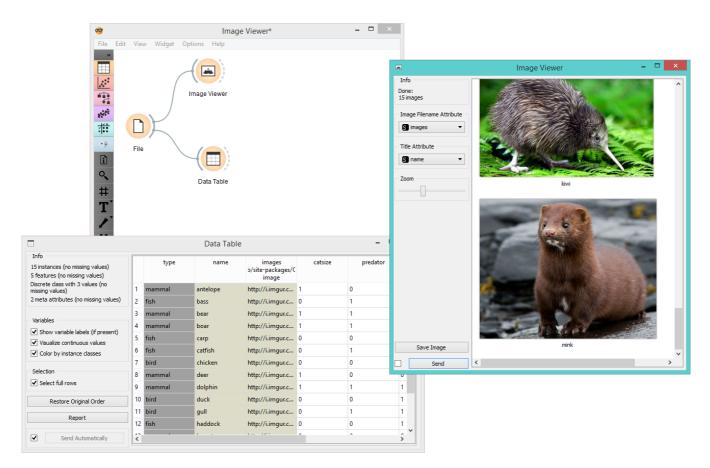
A data set with images.

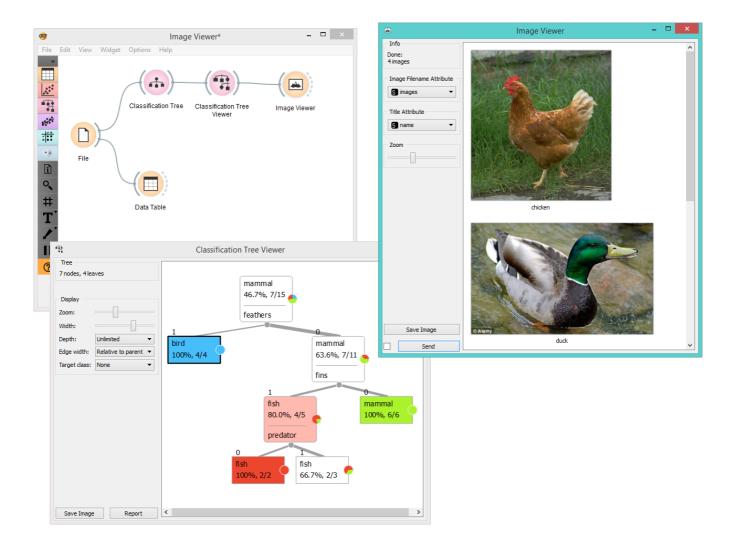

Outputs:

• Data

Images that come with the data.

Description


The **Image Viewer** widget can display images from a data set, which are stored locally or on the internet. It can be used for image comparison, while looking for similarities or discrepancies between selected data instances (e.g. bacterial growth or bitmap representations of handwriting).


- 1. Information on the data set
- 2. Select the column with image data (links).
- 3. Select the column with image titles.
- 4. Zoom in or out.
- 5. Saves the visualization in a file.
- 6. Tick the box on the left to commit changes automatically. Alternatively, click Send.

Examples

A very simple way to use this widget is to connect the <u>File</u> widget with **Image Viewer** and see all the images that come with your data set.

Alternatively, you can visualize only selected instances, as shown in the example below.

Impute

Replaces unknown values in the data.

Signals

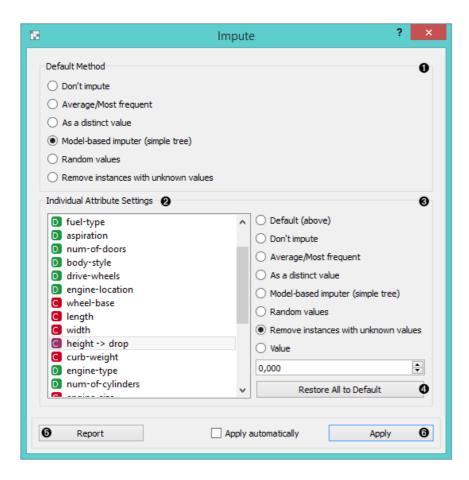
Inputs

• Data

A data set.

• Learner for Imputation

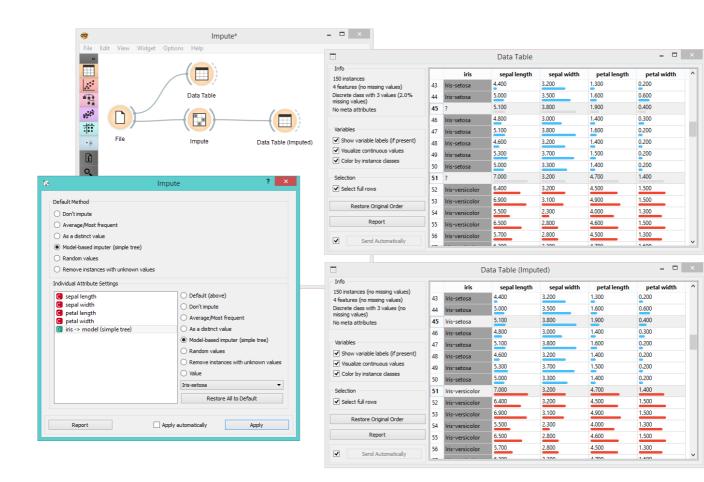
A learning algorithm to be used when values are imputed with a predictive model. This algorithm, if given, substitutes the default (1-NN).


Outputs

• Data

The same data set as in the input, but with the missing values imputed.

Description


Some Orange's algorithms and visualizations cannot handle unknown values in the data. This widget does what statisticians call imputation: it substitutes missing values by values either computed from the data or set by the user.

- 1. In the top-most box, *Default method*, the user can specify a general imputation technique for all attributes.
 - **Don't Impute** does nothing with the missing values.
 - **Average/Most-frequent** uses the average value (for continuous attributes) or the most common value (for discrete attributes).
 - As a distinct value creates new values to substitute the missing ones.
 - **Model-based imputer** constructs a model for predicting the missing value, based on values of other attributes; a separate model is constructed for each attribute. The default model is 1-NN learner, which takes the value from the most similar example (this is sometimes referred to as hot deck imputation). This algorithm can be substituted by one that the user connects to the input signal Learner for Imputation. Note, however, that if there are discrete and continuous attributes in the data, the algorithm needs to be capable of handling them both; at the moment only 1-NN learner can do that. (In the future, when Orange has more regressors, the Impute widget may have separate input signals for discrete and continuous models.)
 - **Random values** computes the distributions of values for each attribute and then imputes by picking random values from them.
 - **Remove examples with missing values** removes the example containing missing values. This check also applies to the class attribute if *Impute class values* is checked.
- 2. It is possible to specify individual treatment for each attribute, which overrides the default treatment set. One can also specify a manually defined value used for imputation. In the screenshot, we decided not to impute the values of "*normalized-losses*" and "*make*", the missing values of "*aspiration*" will be replaced by random values, while the missing values of "*body-style*" and "*drive-wheels*" are replaced by "*hatchback*" and "*fwd*", respectively. If the values of "*length*", "*width*" or "*height*" are missing, the example is discarded. Values of all other attributes use the default method set above (model-based imputer, in our case).
- 3. The imputation methods for individual attributes are the same as default. methods.
- 4. Restore All to Default resets the individual attribute treatments to default.
- 5. Produce a report.
- 6. All changes are committed immediately if *Apply automatically* is checked. Otherwise, *Apply* needs to be ticked to apply any new settings.

Example

To demonstrate how the **Impute** widget works, we played around with the *Iris* data set and deleted some of the data. We used the **Impute** widget and selected the *Model-based imputer* to impute the missing values. In another <u>Data</u> <u>Table</u>, we see how the question marks turned into distinct values ("Iris-setosa, "Iris-versicolor").

~

Merge Data

Merges two data sets, based on values of selected attributes.

Signals

Inputs:

• Data

Attribute-valued data set.

• Extra Data

Attribute-valued data set.

Outputs:

• Data

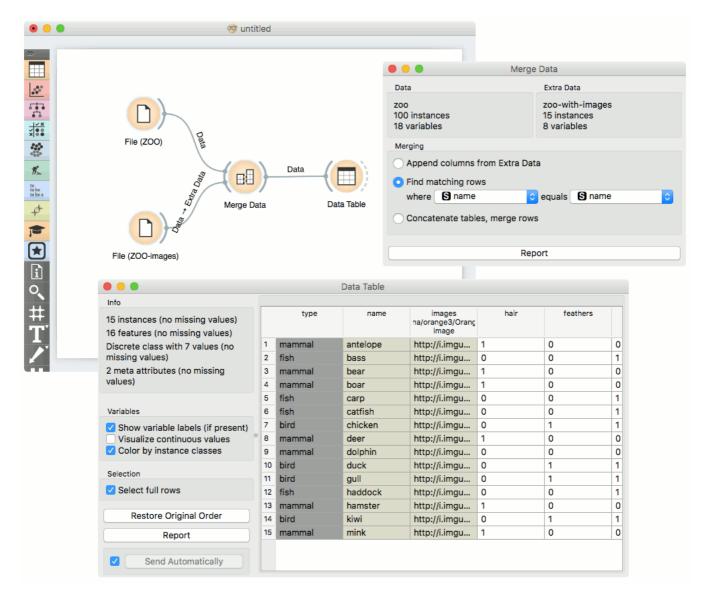
Instances from input data to which attributes from input extra data are added.

Description

The **Merge Data** widget is used to horizontally merge two data sets, based on values of selected attributes. In the input, two data sets are required, data and extra data. The widget allows selection of an attribute from each domain, which will be used to perform the merging. The widget produces one output. It corresponds to instances from the input data to which attributes from input extra data are appended.

Merging is done by values of selected (merging) attributes. First, the value of the merging attribute from Data is taken and instances from Extra Data are searched for matching values. If more than a single instance from Extra Data was to be found, the attribute is removed from available merging attributes.

🔴 😑 🔵 Merge	Data					
Data 0	Extra Data 🛛 🛛					
zoo 101 instances 18 variables	zoo-with-images 15 instances 8 variables					
Merging 🚯						
Append columns from Extra Dat	a					
by matching 😒 name 🛛 🕘	ᅌ with 🔇 name 🛛 🗯 ᅌ					
Find matching rows						
O Concatenate tables, merge rows	5					
G Rep	ort					


- 1. Information on Data
- 2. Information on Extra Data
- 3. Merging type. **Append columns from Extra Data** outputs all instances from Data appended by matching instances from Extra Data. When no match is found, unknown values are appended. **Find matching rows** outputs ts similar as above, except hen no match is found, instances are excluded. **Concatenate tables, merge rows** outputs all instances from both inputs, even though the match may not be found. In that case unknown values

are assigned.

- 4. List of comparable attributes from Data
- 5. List of comparable attributes from Extra Data
- 6. Produce a report.

Example

Merging two data sets results in appending new attributes to the original file, based on a selected common attribute. In the example below, we wanted to merge the **zoo.tab** file containing only factual data with **zoo-with-images.tab** containing images. Both files share a common string attribute *names*. Now, we create a workflow connecting the two files. The *zoo.tab* data is connected to **Data** input of the **Merge Data** widget, and the *zoo-with-images.tab* data to the **Extra Data** input. Outputs of the **Merge Data** widget is then connected to the **Data Table** widget. In the latter, the **Merged Data** channels are shown, where image attributes are added to the original data.

The case where we want to include all instances in the output, even those where no match by attribute *names* was found, is shown in the following workflow.

••	🦁 untitle	ed								
					•	Merge	Data			
				Data	1		Extra Data			
				zoo 100	instances ariables		zoo-with-images 15 instances 8 variables			
÷.	File (ZOO)			Mer	ging					
•					Append columns fro	m Extra Dat	2			
	# B		Data		y matching S na		with S name	e		
	Rege Date	/						-		
	Merge Data	a	Data	Table F	ind matching rows					
					Concatenate tables	, merge rows	3			
•										
1						Dee	art			
	File (ZOO-images)					Rep	on			
	• • •			Data Table						
	Info									
	100 instances		type	name	images	hair	feathers			
	16 features (no missing values)				na/orange3/Orang image					
	Discrete class with 7 values (no	1	mammal	aardvark	?	1	0	(
· · · · · · · · · · · · · · · · · · ·	missing values)	2	mammal	antelope	http://i.imgu	1	0	(
			C - 1			0		•		
	2 meta attributes (42.5% missing	3	fish	bass	http://i.imgu	0	0			
	2 meta attributes (42.5% missing values)	3 4	fish mammal	bass bear	http://i.imgu http://i.imgu	1	0	9		
						-	-			
		4	mammal	bear	http://i.imgu	1	0			
	values)	4 5	mammal mammal	bear boar	http://i.imgu http://i.imgu	1	0	0		
	Variables Variable labels (if present) Visualize continuous values	4 5 6	mammal mammal mammal	bear boar buffalo	http://i.imgu http://i.imgu ?	1 1 1	0 0 0 0 0 0	(
	Variables Show variable labels (if present)	4 5 6 7	mammal mammal mammal mammal	bear boar buffalo calf	http://i.imgu http://i.imgu ? ?	1 1 1 1 1	0 0 0 0 0			
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes	4 5 6 7 8	mammal mammal mammal mammal fish	bear boar buffalo calf carp	http://i.imgu http://i.imgu ? ? http://i.imgu	1 1 1 1 0	0 0 0 0 0 0	· · · · ·		
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes Selection	4 5 6 7 8 9	mammal mammal mammal mammal fish fish	bear boar buffalo calf carp catfish	http://i.imgu http://i.imgu ? ? http://i.imgu http://i.imgu	1 1 1 1 0 0	0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·		
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes	4 5 6 7 8 9 10	mammal mammal mammal mammal fish fish mammal	bear boar buffalo calf carp catfish cavy	http://i.imgu http://i.imgu ? http://i.imgu http://i.imgu ?	1 1 1 1 0 0 1	0 0 0 0 0 0 0 0 0 0 0			
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes Selection Select full rows	4 5 6 7 8 9 10 11	mammal mammal mammal mammal fish fish mammal mammal	bear boar buffalo calf carp catfish cavy cheetah	http://i.imgu http://i.imgu ? http://i.imgu http://i.imgu ? ?	1 1 1 1 0 0 1 1	0 0 0 0 0 0 0 0 0 0 0			
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes Selection	4 5 6 7 8 9 10 11 12	mammal mammal mammal fish fish mammal mammal bird	bear boar buffalo calf carp catfish cavy cheetah chicken	http://i.imgu http://i.imgu ? http://i.imgu http://i.imgu ? ? http://i.imgu	1 1 1 1 0 0 1 1 1 0	0 0 0 0 0 0 0 0 0 0 1			
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes Selection Select full rows	4 5 6 7 8 9 10 11 12 13	mammal mammal mammal fish fish mammal mammal bird fish	bear boar calf carp catfish cavy cheetah chicken chub	http://i.imgu http://i.imgu ? http://i.imgu http://i.imgu ? ? http://i.imgu ?	1 1 1 1 0 0 1 1 1 0 0	0 0 0 0 0 0 0 0 0 0 1 0			
	values) Variables Show variable labels (if present) Visualize continuous values Color by instance classes Selection Select full rows Restore Original Order	4 5 6 7 8 9 10 11 12 13 14	mammal mammal mammal fish fish mammal bird fish invertebrate	bear boar calf carp catfish cavy cheetah chicken chub clam	http://i.imgu http://i.imgu ? http://i.imgu http://i.imgu ? ? http://i.imgu ? ?	1 1 1 1 0 0 1 1 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0			

The third type of merging is shown in the next workflow. The output consist of both inputs, with unknown values assigned where no match was found.

Hint

If the two data sets consist of equally-named attributes (other than the ones used to perform the merging), Orange will check by default for consistency of the values of these attributes and report an error in case of non-matching values. In order to avoid the consistency checking, make sure that new attributes are created for each data set: you may use the '*Columns with the same name in different files represent different variables*' option in the File widget for loading the data.

Outliers

Simple outlier detection by comparing distances between instances.

Signals

Inputs:

• Data

A data set

• Distances

A distance matrix

Outputs:

• Outliers

A data set containing instances scored as outliers

• Inliers

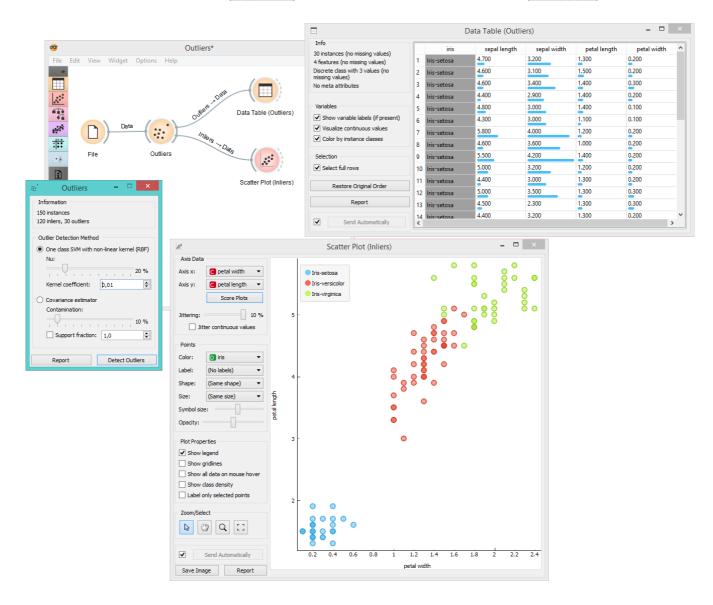
A data set containing instances not scored as outliers

Description

The **Outliers** widget applies one of the two methods for outlier detection. Both methods apply classification to the data set, one with SVM (multiple kernels) and the other with elliptical envelope. *One-class SVM with non-linear kernels (RBF)* performs well with non-Gaussian distributions, while *Covariance estimator* works only for data with Gaussian distribution.

🐨 Outliers 🚽 🗆 🗙
Information
150 instances
120 inliers, 30 outliers
Outlier Detection Method 2
One class SVM with non-linear kernel (RBF)
Nu:
Kernel coefficient: \$,01
O Covariance estimator
Contamination:
10 %
Support fraction: 1,0
0 0
Report Detect Outliers

1. Information on the input data, number of inliers and outliers based on the selected model.


2. Select the Outlier detection method:

• One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class

- **Nu** is a parameter for the upper bound on the fraction of training errors and a lower bound of the fraction of support vectors
- **Kernel coefficient** is a gamma parameter, which specifies how much influence a single data instance has
- Covariance estimator: fits ellipsis to central points with Mahalanobis distance metric
 - Contamination is the proportion of outliers in the data set
 - Support fraction specifies the proportion of points included in the estimate
- 3. Produce a report.
- 4. Click *Detect outliers* to output the data.

Example

Below, is a simple example of how to use this widget. We used the *Iris* data set to detect the outliers. We chose the *one class SVM with non-linear kernel (RBF)* method, with Nu set at 20% (less training errors, more support vectors). Then we observed the outliers in the Data Table widget, while we sent the inliers to the Scatter Plot.

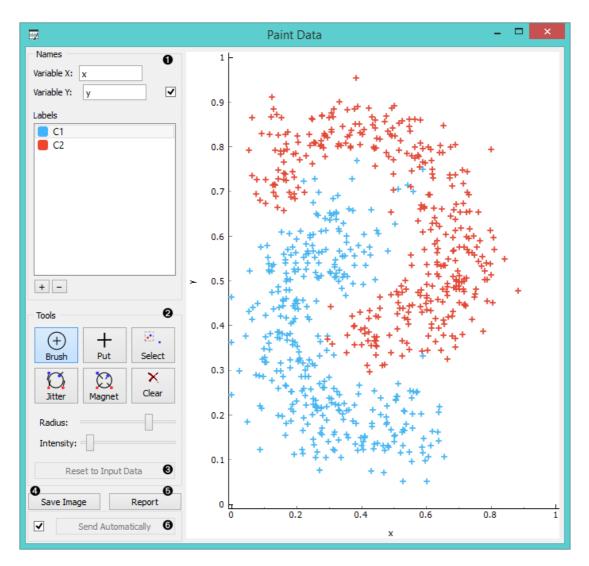
Paint Data

Paints data on a 2D plane. You can place individual data points or use a brush to paint larger data sets.

Signals

Inputs

• (None)

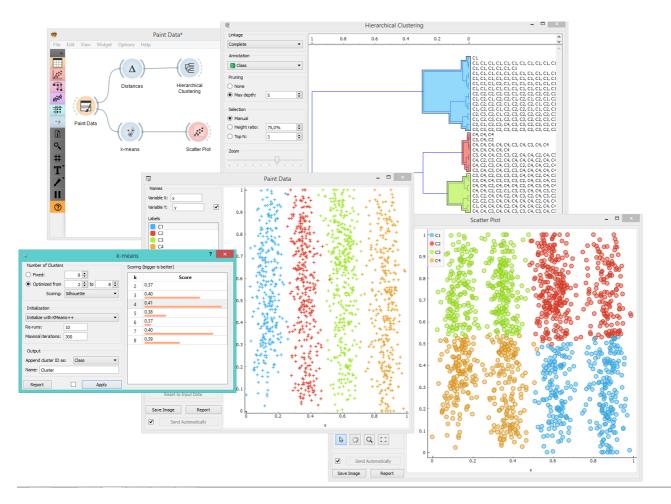

Outputs

• Data

Attribute-valued data set created in the widget

Description

The widget supports the creation of a new data set by visually placing data points on a two-dimension plane. Data points can be placed on the plane individually (*Put*) or in a larger number by brushing (*Brush*). Data points can belong to classes if the data is intended to be used in supervised learning.


1. Name the axes and select a class to paint data instances. You can add or remove classes. Use only one class to

create classless, unsupervised data sets.

- Drawing tools. Paint data points with *Brush* (multiple data instances) or *Put* (individual data instance). Select data points with *Select* and remove them with the Delete/Backspace key. Reposition data points with <u>Jitter</u> (spread) and *Magnet* (focus). Use *Zoom* and scroll to zoom in or out. Below, set the radius and intensity for Brush, Put, Jitter and Magnet tools.
- 3. Reset to Input Data.
- 4. Save Image saves the image to your computer in a .svg or .png format.
- 5. Produce a report.
- 6. Tick the box on the left to automatically commit changes to other widgets. Alternatively, press *Send* to apply them.

Example

In the example below, we have painted a data set with 4 classes. Such data set is great for demonstrating k-means and hierarchical clustering methods. In the screenshot, we see that <u>k-means</u>, overall, recognizes clusters better than <u>hierarchical clustering</u>. It returns a score rank, where the best score (the one with the highest value) means the most likely number of clusters. Hierarchical clustering, however, doesn't group the right classes together. This is a great tool for learning and exploring statistical concepts.

Preprocess

Preprocesses data with selected methods.

Signals

Inputs:

• Data

A data set.

Outputs:

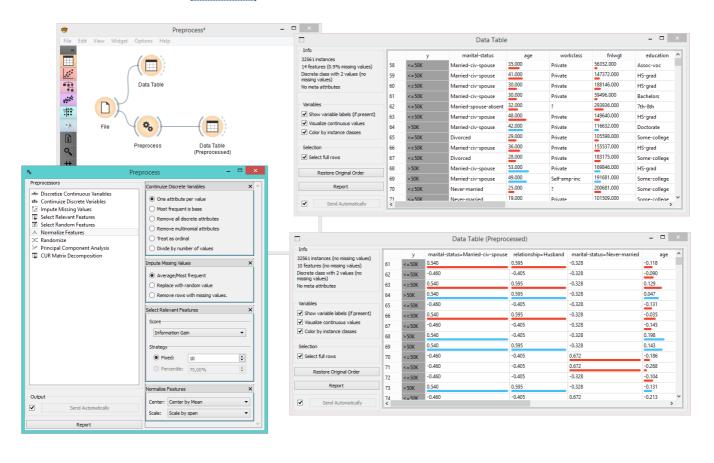
• Preprocessor

A preprocessing method.

Preprocessed Data

Data preprocessed with selected methods.

Description


Preprocessing is crucial for achieving better-quality analysis results. The **Preprocess** widget offers five preprocessing methods to improve data quality. In this widget, you can immediately discretize continuous values or continuize discrete ones, impute missing values, select relevant features or center and scale them. Basically, this widget combines four separate widgets for simpler processing.

¢ ₆	Preprocess – 🗆 🗙
Preprocessors	Discretize Continuous Variables 🛛 🖉 🗙 🛆
 Discretize Continuous Variables Continuize Discrete Variables Impute Missing Values Select Relevant Features Select Random Features Normalize Features Randomize Principal Component Analysis CUR Matrix Decomposition 	Entropy-MDL discretization Equal frequency discretization Equal width discretization Number of intervals (for equal width/frequency)
	Continuize Discrete Variables Continuize Discrete Variables One attribute per value Most frequent is base Remove all discrete attributes Remove multinomial attributes Treat as ordinal Divide by number of values
	Impute Missing Values Impute Missing Values Average/Most frequent Replace with random value Remove rows with missing values. Select Relevant Features ×
	Score Information Gain Strategy Fixed: Percentile: 75,00%
	Select Random Features ③ × Strategy Fixed 7 Percentage 75,00%
	Normalize Features Center: Center by Mean Scale: Scale by span
Output	Randomize Randomize
Send Automatically	Randomize: Classes 🔻
Report	•

- 1. List of preprocessors. You drag the preprocessors you wish to use to the right side of the widget.
- 2. Discretization of continuous values
- 3. Continuization of discrete values
- 4. Impute missing values or remove them.
- 5. Select the most relevant features by information gain, gain ratio, Gini index.
- 6. Select random features
- 7. Normalize features
- 8. Randomize
- 9. When the box is ticked (*Send Automatically*), the widget will communicate changes automatically. Alternatively, click *Send*.
- 10. Produce a report.

Example

In the example below, we have used the *adult* data set and preprocessed the data. We continuized discrete values (age, education and marital status...) as *one attribute per value*, we imputed missing values (replacing ? with average values), selected 10 most relevant attributes by *Information gain*, centered them by mean and scaled by span. We can observe the changes in the **Data Table** and compare it to the non-processed data.

Purge Domain

Removes unused attribute values and useless attributes, sorts the remaining values.

Signals

Inputs:

• Data

A data set.

Outputs:

• Data

A filtered data set

Description

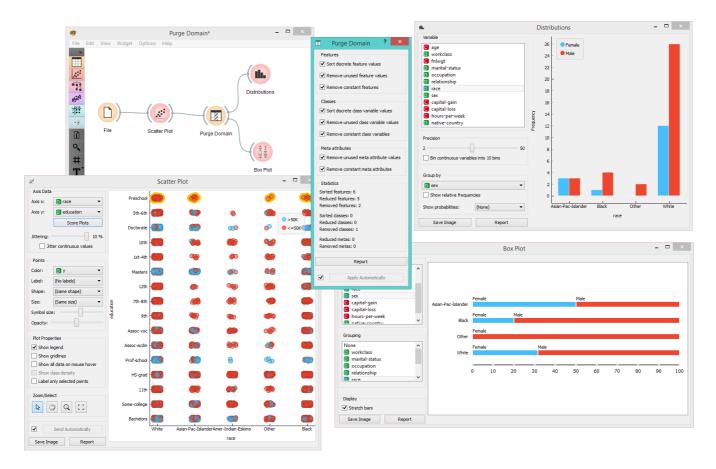
Definitions of nominal attributes sometimes contain values which don't appear in the data. Even if this does not happen in the original data, filtering the data, selecting examplary subsets and alike can remove all examples for which the attribute has some particular value. Such values clutter data presentation, especially various visualizations, and should be removed.

After purging an attribute, it may become single-valued or, in extreme case, have no values at all (if the value of this attribute was undefined for all examples). In such cases, the attribute can be removed.

A different issue is the order of attribute values: if the data is read from a file in a format in which values are not declared in advance, they are sorted "in order of appearance". Sometimes we would prefer to have them sorted alphabetically.

Purge Domain ? ×
Features 1
✓ Sort discrete feature values
✓ Remove unused feature values
✓ Remove constant features
Classes 2
\checkmark Sort discrete class variable values
Remove unused class variable values
✓ Remove constant class variables
Meta attributes 🔞
\checkmark Remove unused meta attribute values
Remove constant meta attributes
Statistics
Sorted features: 6
Reduced features: 5
Removed features: 2
Sorted classes: 0
Reduced classes: 0
Removed classes: 1
Reduced metas: 0
Removed metas: 0
Report (
Apply Automatically

- 1. Purge attributes.
- 2. Purge classes.
- 3. Purge meta attributes.
- 4. Information on the filtering process
- 5. Produce a report.
- 6. If Apply automatically is ticked, the widget will output data at each change of widget settings.


Such purification is done by the widget **Purge Domain**. Ordinary attributes and class attributes are treated separately. For each, we can decide if we want the values sorted or not. Next, we may allow the widget to remove attributes with less than two values or remove the class attribute if there are less than two classes. Finally, we can instruct the widget to check which values of attributes actually appear in the data and remove the unused values. The widget cannot remove values if it is not allowed to remove the attributes, since having attributes without values makes no sense.

The new, reduced attributes get the prefix "R", which distinguishes them from the original ones. The values of new attributes can be computed from the old ones, but not the other way around. This means that if you construct a classifier from the new attributes, you can use it to classify the examples described by the original attributes. But not the opposite: constructing a classifier from the old attributes and using it on examples described by the reduced ones won't work. Fortunately, the latter is seldom the case. In a typical setup, one would explore the data, visualize it, filter it, purify it... and then test the final model on the original data.

Example

The **Purge Domain** widget would typically appear after data filtering, for instance when selecting a subset of visualized examples.

In the above schema, we play with the *adult.tab* data set: we visualize it and select a portion of the data, which contains only four out of the five original classes. To get rid of the empty class, we put the data through **Purge Domain** before going on to the **Box Plot** widget. The latter shows only the four classes which are in the **Purge Data** output. To see the effect of data purification, uncheck *Remove unused class variable values* and observe the effect this has on Box Plot.

Python Script

Extends functionalities through Python scripting.

Signals

Inputs:

• in_data (Orange.data.Table)

Input data set bound to in_data variable in the script's local namespace.

• in_distance (Orange.core.SymMatrix)

Input symmetric matrix bound to in_distance variable in the script's local namespace.

• in_learner (Orange.classification.Learner)

Input learner bound to in_learner variable in the script's local namespace.

• in_classifier (Orange.classification.Learner)

Input classifier bound to in_classifier variable in the script's local namespace.

in_object (object)

Input python object bound to in_object variable in the script's local namespace.

Outputs:

• out_data (Orange.data.Table)

Data set retrieved from out_data variable in the script's local namespace after execution.

out_distance (Orange.core.SymMatrix)

Symmetric matrix retrieved from out_distance variable in the script's local namespace after execution.

• out_learner (Orange.classification.Learner)

Learner retrieved from out_learner variable in the script's local namespace.

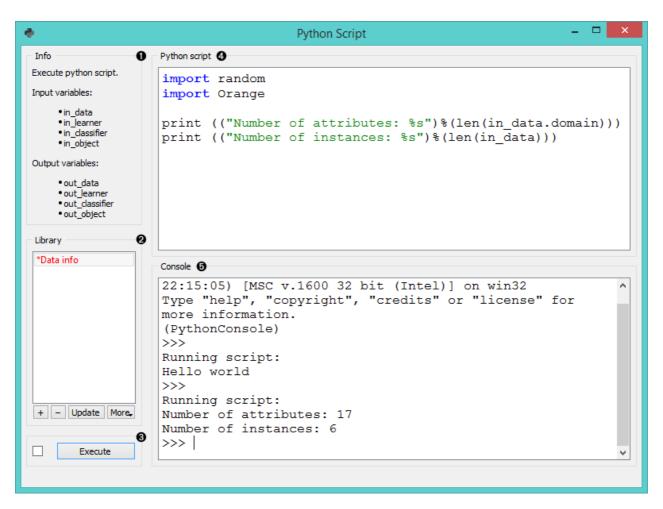
out_classifier (Orange.classification.Learner)

Classifier retrieved from out_classifier variable in the script's local namespace after execution.

out_object (object)

Python object retrieved from out_object variable in the script's local namespace after execution.

Description


Python Script widget can be used to run a python script in the input, when a suitable functionality is not implemented in an existing widget. The script has in_data, in_distance, in_learner, in_classifier and in_object variables (from input signals) in its local namespace. If a signal is not connected or it did not yet receive any data, those variables contain None. After the script is executed, out_data, out_distance, ... variables from the script's local namespace are extracted and used as outputs of the widget. The widget can be further connected to other widgets for visualizing the output.

For instance the following script would simply pass on all signals it receives:

```
out_data = in_data
out_distance = in_distance
out_learner = in_learner
out_classifier = in_classifier
out_object = in_object
```

Note:

You should not modify the input objects in place.

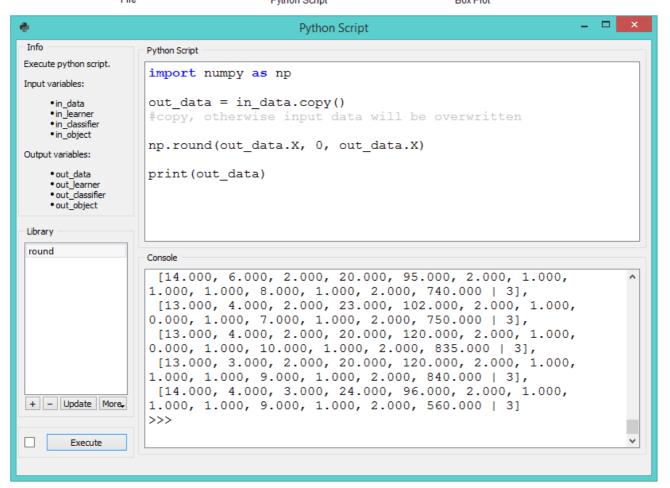
- 1. Info box contains names of basic operators for Orange Python script.
- 2. The *Library* control can be used to manage multiple scripts. Pressing "+" will add a new entry and open it in the *Python script* editor. When the script is modified, its entry in the *Library* will change to indicate it has unsaved changes. Pressing *Update* will save the script (keyboard shortcut ctrl + s). A script can be removed by selecting it and pressing the "-" button.
- 3. Pressing *Execute* in the *Run* box executes the script (using exec). Any script output (from print) is captured and displayed in the *Console* below the script. If *Auto execute* is checked, the script is run any time inputs to the widget change.
- 4. The *Python script* editor on the left can be used to edit a script (it supports some rudimentary syntax highlighting).
- 5. Console displays the output of the script.

Examples

Python Script widget is intended to extend functionalities for advanced users.

One can, for example, do batch filtering by attributes. We used zoo.tab for the example and we filtered out all the attributes that have more than 5 discrete values. This in our case removed only 'leg' attribute, but imagine an example where one would have many such attributes.

```
from Orange.data import Domain, Table
domain = Domain([attr for attr in in_data.domain.attributes
                  if attr.is_continuous or len(attr.values) <= 5],</pre>
                 in_data.domain.class_vars)
out_data = Table(domain, in_data)
             File
                                       Python Script
                                                                       Data Table
                                                                                    _ □
 ø
                                          Python Script
  Info
                    Python Script
 Execute python script.
                    from Orange.data import Domain, Table
 Input variables:
                    domain = Domain([attr for attr in in_data.domain.attributes
     •in_data
     • in_learner
                                       if attr.is_continuous or len(attr.values)
     • in_classifier
                                       <= 5], in_data.domain.class_vars)
     in_object
 Output variables:
                    out_data = Table(domain, in_data)
     • out data

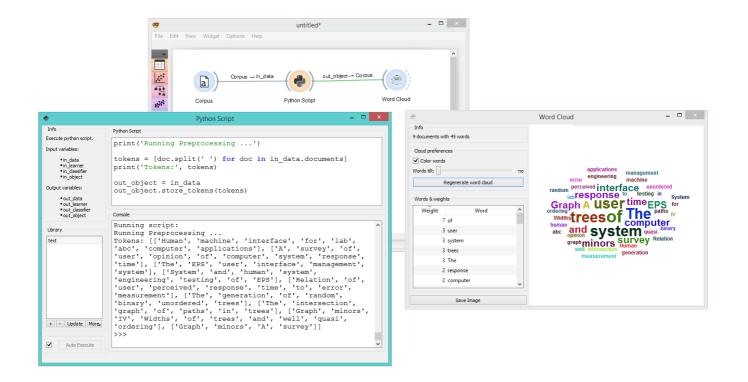

    out_learner

                    print(out_data.domain)
     • out_classifier
     out_object
  Library
  filtering
                    Console
                     [1,
                          0,
                             0, 1,
                                    Ο,
                                        Ο,
                                           Ο,
                                               1,
                                                  1,
                                                      1,
                                                         Ο,
                                                             0,
                                                                 1,
                                                                    0,
                                                                        1
                                                                           Т
                                                                            mammall,
                     [1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
                                                                            insect],
                     [1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1 | mammal],
                     [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 |
                    invertebrate],
                     [0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0 | bird]
                    >>>
                    Running script:
                    [hair, feathers, eggs, milk, airborne, aquatic, predator,
  + – Update More,
                    toothed, backbone, breathes, venomous, fins, tail,
                    domestic, catsize | type]
                    >>>
        Execute
                                                                                           ¥
```

The second example shows how to round all the values in a few lines of code. This time we used wine.tab and rounded all the values to whole numbers.

```
import numpy as np
out_data = in_data.copy()
#copy, otherwise input data will be overwritten
np.round(out_data.X, 0, out_data.X)
```


The third example introduces some gaussian noise to the data. Again we make a copy of the input data, then walk through all the values with a double for loop and add random noise.


```
import random
from Orange.data import Domain, Table
new_data = in_data.copy()
for inst in new_data:
    for f in inst.domain.attributes:
        inst[f] += random.gauss(0, 0.02)
out_data = new_data
```

•	Python Script – 🗖	×
Info	Python Script	
Execute python script.	import random	
Input variables:		
•in_data •in_learner	<pre>new_data = in_data.copy()</pre>	
 in_classifier in_object 	for inst in new data:	
_ ,	for f in inst.domain.attributes:	
Output variables:	<pre>inst[f] += random.gauss(0, 0.02)</pre>	
• out_data		
• out_learner • out_classifier	out data = new data	
• out_classifier • out_object	print(out data)	
Library	Console	
noise	[6.386, 3.137, 5.473, 1.809 Iris-virginica],	~
	[6.010, 3.005, 4.783, 1.820 Iris-virginica],	
	[6.880, 3.068, 5.396, 2.115 Iris-virginica],	
	[6.702, 3.117, 5.602, 2.390 Iris-virginica],	
	[6.885, 3.122, 5.073, 2.275 Iris-virginica],	
	[5.813, 2.717, 5.089, 1.905 Iris-virginica],	
	[6.816, 3.181, 5.918, 2.319 Iris-virginica],	
	[6.717, 3.322, 5.701, 2.476 Iris-virginica],	
	[6.720, 2.993, 5.184, 2.322 Iris-virginica],	
	[6.318, 2.536, 4.983, 1.853 Iris-virginica],	
+ - Update More-	[6.512, 3.006, 5.202, 2.039 Iris-virginica],	
	[6.188, 3.393, 5.377, 2.300 Iris-virginica],	
	[5.888, 3.009, 5.118, 1.787 Iris-virginica]	
Execute	>>>	
	>>>	
		~

The final example uses Orange3-Text add-on. **Python Script** is very useful for custom preprocessing in text mining, extracting new features from strings, or utilizing advanced nltk or gensim functions. Below, we simply tokenized our input data from deerwester.tab by splitting them by whitespace.

```
print('Running Preprocessing ...')
tokens = [doc.split(' ') for doc in in_data.documents]
print('Tokens:', tokens)
out_object = in_data
out_object.store_tokens(tokens)
```

You can add a lot of other preprocessing steps to further adjust the output. The output of **Python Script** can be used with any widget that accepts the type of output your script produces. In this case, connection is green, which signalizes the right type of input for Word Cloud widget.

Randomize

Shuffles classes, attributes and/or metas of an input data set.

Signals

Inputs:

• Data

Data set.

Outputs:

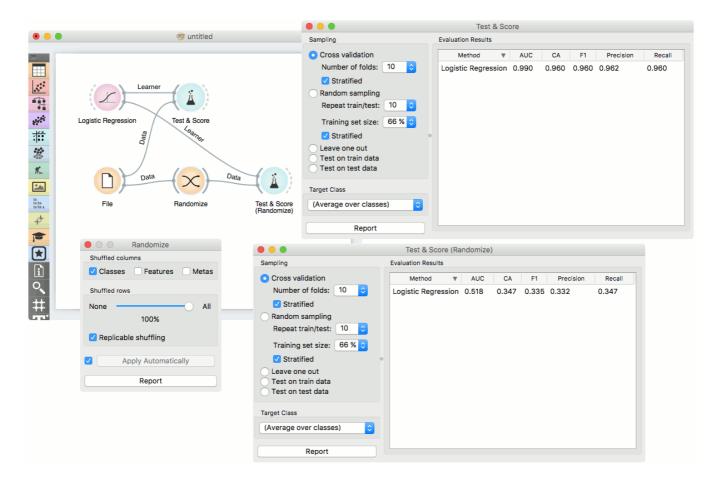
• Data

Randomized data set.

Description

The **Randomize** widget receives a data set in the input and outputs the same data set in which the classes, attributes or/and metas are shuffled.

e C Randomize
Shuffled columns
Classes Features Metas
Shuffled rows
None All
Replicable shuffling
Apply Automatically
Report


- 1. Select group of columns of the data set you want to shuffle.
- 2. Select proportion of the data set you want to shuffle.
- 3. Produce replicable output.
- 4. If *Apply automatically* is ticked, changes are committed automatically. Otherwise, you have to press *Apply* after each change.
- 5. Produce a report.

Example

The **Randomize** widget is usually placed right after (e.g. <u>File</u> widget. The basic usage is shown in the following workflow, where values of class variable of Iris data set are randomly shuffled.

			• • •					Data Table			
•	🤓 until	tled	Info								
			150 instances (n	o mise	sing values)		iris	sepal length	sepal width	petal length	petal width
22			4 features (no m			1	Iris-setosa	5.10	0 3.5	00 1.400	0.20
			Discrete class w			2	Iris-setosa	4.90	0 3.0	00 1.400	0.20
1			missing values)			3	Iris-setosa	4.70	0 3.2	00 1.300	0.20
			No meta attribut	00		4	Iris-setosa	4.60	0 3.1	00 1.500	0.20
			No meta attribut	.63		5	Iris-setosa	5.00	0 3.6	00 1.400	0.20
**	Data Table					6	Iris-setosa	5.40	0 3.9	00 1.700	0.40
and the second s	Data		Variables			7	Iris-setosa	4.60	-		0.30
	â		🔽 Show variable	e label	ls (if present)	8	Iris-setosa	5.00			0.20
	/		Visualize con			9	Iris-setosa	4.40			0.20
**			Color by insta	ance c	lasses	10	Iris-setosa	4.90			0.10
虎	Data ~	Data	Selection			11	Iris-setosa	5.40			0.20
						12	Iris-setosa	4.80	-		0.20
			Select full row	NS		13	Iris-setosa	4.80			0.20
to be	File Randomize	Data Table (1)				14	Iris-setosa	4.80			0.10
to be to be a			Destant			15					
ø			Restore O	riginai	Order		Iris-setosa	5.80			0.20
			Re	port		16	Iris-setosa	5.70			0.40
1	Des destine				17	Iris-setosa 5.400				0.40	
*	Randomize			Send Automatically			Iris-setosa	5.10			0.30
	Shuffled columns					19	Iris-setosa	5.70	0 3.8	00 1 700	0.30
	🗹 Classes 📄 Features 📄 Metas				D	ata T	ïable (1)				
0.		Info				orea 1					
	Shuffled rows				iris		sepal length	sepal width	petal length	petal width	
#	None All	150 instances (no		1	Iris-setosa	10	5.100	3.500	1.400	0.200	
La pa Y	100%	4 features (no mis		2	Iris-versicolor		4,900	3.000	1.400	0.200	
	10070	Discrete class with	n 3 values (no	3	Iris-versicolor		4.700	3.200	1.300	0.200	
	Replicable shuffling	missing values)		4	Iris-setosa		4.600	3.100	1.500	0.200	
		No meta attribute:	5	5	Iris-virginica		5.000	3.600	1.400	0.200	
	Apply Automatically			6	-	-			1.400	0.400	
		Variables		7	Iris-versicolor		5.400	3.900			
	Report	Show variable I	abels (if present)	8	Iris-virginica	-	4.600	3.400	1.400	0.300	
		Visualize contir		-	Iris-setosa		5.000	3.400	1.500	0.200	
		Color by instan	ce classes	• 9	Iris-setosa	-	4.400	2.900	1.400	0.200	
				10	Iris-virginica		4.900	3.100	1.500	0.100	
		Selection		11	Iris-versicolor		5.400	3.700	1.500	0.200	
		Select full rows		12	Iris-setosa		4.800	3.400	1.600	0.200	
				13	Iris-virginica		4.800	3.000	1.400	0.100	
				14	Iris-versicolor		4.300	3.000	1.100	0.100	
		Restore Orig	ginal Order	15	Iris-versicolor		5.800	4.000	1.200	0.200	
		Dee	ort	16	Iris-setosa		5.700	4.400	1.500	0.400	
		Rep	on	17	Iris-versicolor		5.400	3.900	1.300	0.400	
		Send Au	tomatically	18	Iris-versicolor		5.100	3.500	1.400	0.300	

In the next example we show how shuffling class values influences model performance on the same data set as above.

Rank

Ranking of attributes in classification or regression data sets.

Signals

Inputs:

• Data

An input data set.

• Scorer (multiple)

Models that implement the feature scoring interface, such as linear / logistic regression, random forest, stochastic gradient descent, etc.

Outputs:

Reduced Data

A data set whith selected attributes.

Description

The **Rank** widget considers class-labeled data sets (classification or regression) and scores the attributes according to their correlation with the class.

Select Attributes 1		#	Inf. gain	Gain Ratio	Gini	ANOVA	Chi2	ReliefF	FCBF
O None	C petal length	c	1.112	0.557	0.217	847.977	76.218	0.409	0.618
	C petal width	c	1.077	0.541	0.208	764.858	71.357	0.414	0.599
O Manual		c	0.549	0.276	0.110	78.627	45.082	0.138	0.000
Best ranked: 2 2	C sepal length	c	0.375	0.191	0.076	33.663	31.390	0.135	0.212

- 1. Select attributes from the data table.
- 2. Data table with attributes (rows) and their scores by different scoring methods (columns)
- 3. Produce a report.
- 4. If 'Send Automatically' is ticked, the widget automatically communicates changes to other widgets.

Scoring methods

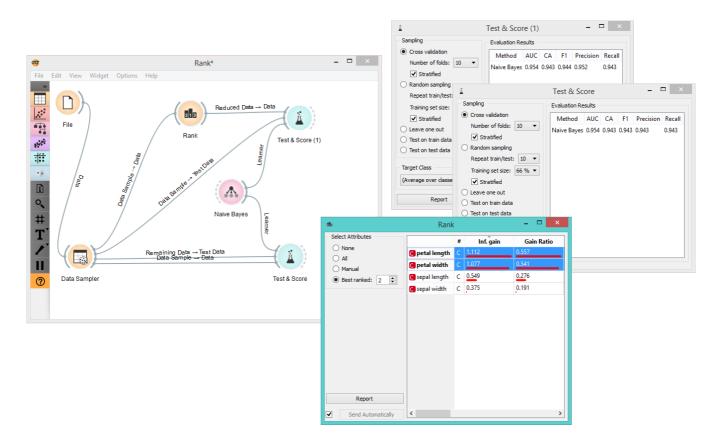
1. Information Gain: the expected amount of information (reduction of entropy)

- 2. <u>Gain Ratio</u>: a ratio of the information gain and the attribute's intrinsic information, which reduces the bias towards multivalued features that occurs in information gain
- 3. Gini: the inequality among values of a frequency distribution
- 4. ANOVA: the difference between average vaules of the feature in different classes
- 5. Chi2: dependence between the feature and the class as measure by the chi-square statistice
- 6. ReliefF: the ability of an attribute to distinguish between classes on similar data instances
- 7. FCBF (Fast Correlation Based Filter): entropy-based measure, which also identifies redundancy due to pairwise correlations between features

Additionally, you can connect certain learners that enable scoring the features according to how important they are in models that the learners build (e.g. Linear / Logistic Regression, Random Forest, SGD, ...).

Example: Attribute Ranking and Selection

Below, we have used the **Rank** widget immediately after the <u>File</u> widget to reduce the set of data attributes and include only the most informative ones:



Notice how the widget outputs a data set that includes only the best-scored attributes:

			Da	ata Table				- 🗆 🛛		
Info			iameter narrowin	chest pain	ajor vessels	colo	ore thal	~		
303 instances 3 features (0.7% missing values)		1	0	typical ang	0.000		fixed defect			
Discrete class with 2 values (no		2	1	asymptomatic	3.000		normal			
missing values) No meta attributes		3	1	asymptomatic	asymptomatic 2.000 re		reversable defe	ct		
		4	0	non-anginal	0.000		normal			
Variables		5	0	atypical ang	0.000		normal			
Show variable labels (if prese	ent)	6	0	atypical ang	0.000		normal			
Visualize continuous values		7	1	asymptomatic	2.000	_	normal			
Color by instance classes		8	0	asymptomatic	0.000	•	normal			
Selection		0	1	animatomatic	1.000		rovorsable defe	-+		
 Select full rows 	66 0				Ra	nk				×
	0 N	lissing	values have been im	puted.						
	Selec	t Attri	butes	#			Inf. gain	Gain Ratio	Gini	_
	0	lone		D thal		# 3	0.208	0.167	0.068	
	04	All		D chest pain		4	0.205	0.118	0.067	-
	<u> </u>	1anual		major vessels of	alarad	4 C	0.180	0.115	0.059	-
	• E	Best ra	nked: 3 ≑	C ST by exercise	oloreu	c	0.145	0.074	0.047	-
				D exerc ind ang		2	0.139	0.153	0.046	
				max HR		2 C	0.123	0.062	0.040	
Restore Original Order				D slope peak exc	ст	3	0.112	0.087	0.038	
Report				C age	51	c	0.058	0.029	0.020	$- \parallel$
				D gender		2	0.057	0.063	0.019	
Send Automatically				D rest ECG			0.024	0.022	0.008	
				C cholesterol		-	0.016	0.008	0.006	
				C rest SBP		-	0.015	0.008	0.005	$- \ $
			leport	D fasting blood st	ugar > 120	-	0.000	0.001	0.000	
					agai 2 120	۲				
	<	Sen	d Automatically	<						>

Example: Feature Subset Selection for Machine Learning

What follows is a bit more complicated example. In the workflow below, we first split the data into a training set and a test set. In the upper branch, the training data passes through the **Rank** widget to select the most informative attributes, while in the lower branch there is no feature selection. Both feature selected and original data sets are passed to their own **Test & Score** widgets, which develop a *Naive Bayes* classifier and score it on a test set.

For data sets with many features, a naive Bayesian classifier feature selection, as shown above, would often yield a better predictive accuracy.

Save Data

Saves data to a file.

Signals

Inputs:

• Data

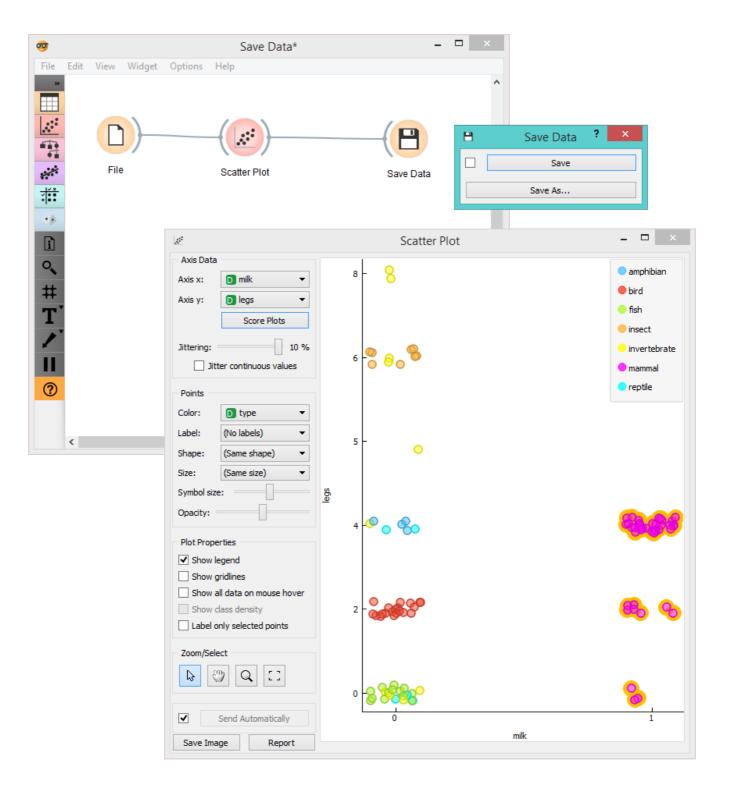
A data set.

Outputs:

• (None)

Description

The **Save Data** widget considers a data set provided in the input channel and saves it to a data file with a specified name. It can save the data as a tab-delimited or a comma-separated file.


The widget does not save the data every time it receives a new signal in the input as this would constantly (and, mostly, inadvertently) overwrite the file. Instead, the data is saved only after a new file name is set or the user pushes the *Save* button.

- 1. Save by overwriting the existing file.
- 2. *Save as* to create a new file.

Example

In the workflow below, we used the *Zoo* data set. We loaded the data into the <u>Scatter Plot</u> widget, with which we selected a subset of data instances and pushed them to the **Save Data** widget to store them in a file.

Select Columns

Manual selection of data attributes and composition of data domain.

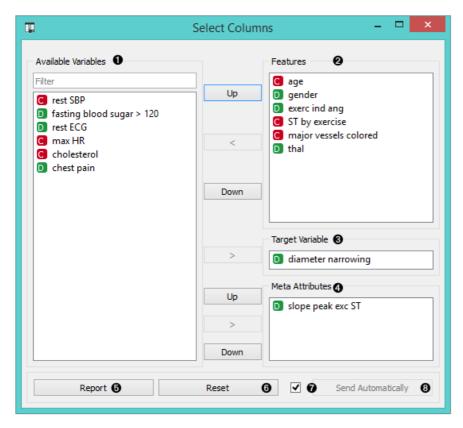
Signals

Inputs:

• Data

Attribute-valued data set.

Outputs:

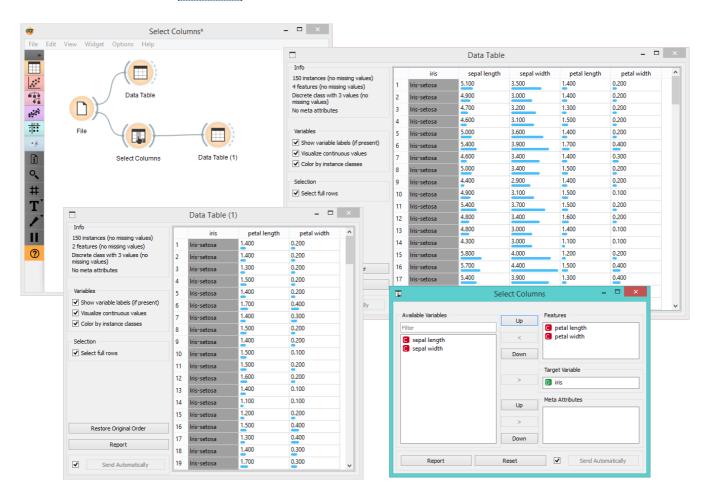

• Data

Attribute-valued data set composed using the domain specification from the widget.

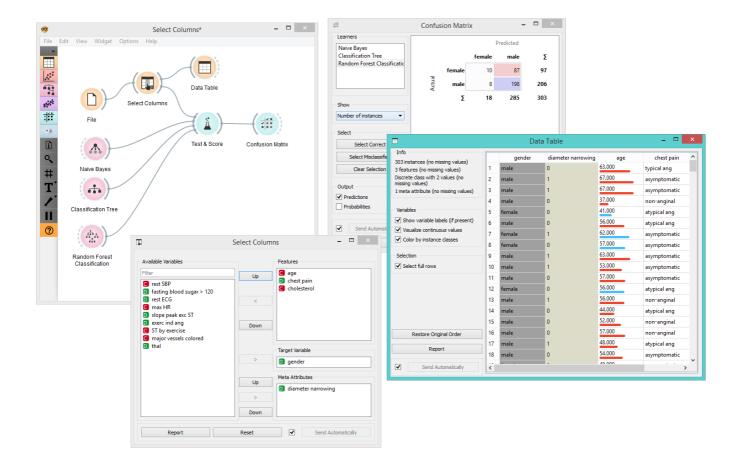
Description

The **Select Columns** widget is used to manually compose your <u>data domain</u>. The user can decide which attributes will be used and how. Orange distinguishes between ordinary attributes, (optional) class attributes and meta attributes. For instance, for building a classification model, the domain would be composed of a set of attributes and a discrete class attribute. Meta attributes are not used in modelling, but several widgets can use them as instance labels.

Orange attributes have a type and are either discrete, continuous or a character string. The attribute type is marked with a symbol appearing before the name of the attribute (D, C, S, respectively).



- 1. Left-out data attributes that will not be in the output data file
- 2. Data attributes in the new data file


- 3. Target variable. If none, the new data set will be without a target variable.
- 4. Meta attributes of the new data file. These attributes are included in the data set but are, for most methods, not considered in the analysis.
- 5. Produce a report.
- 6. Reset the domain composition to that of the input data file.
- 7. Tick if you wish to auto-apply changes of the data domain.
- 8. Apply changes of the data domain and send the new data file to the output channel of the widget.

Examples

In the workflow below, the *Iris* data from the <u>File</u> widget is fed into the **Select Columns** widget, where we select to output only two attributes (namely petal width and petal length). We view both the original data set and the data set with selected columns in the Data Table widget.

For a more complex use of the widget, we composed a workflow to redefine the classification problem in the *heart-disease* data set. Originally, the task was to predict if the patient has a coronary artery diameter narrowing. We changed the problem to that of gender classification, based on age, chest pain and cholesterol level, and informatively kept the diameter narrowing as a meta attribute.

Select Rows

Selects data instances based on conditions over data features.

Signals

Inputs:

• Data

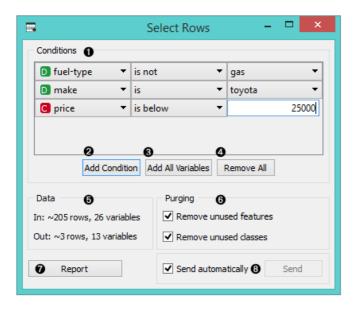
Data set.

Outputs:

• Matching Data

Instances that match the conditions.

• Non-Matching Data


Instances that do not match the conditions.

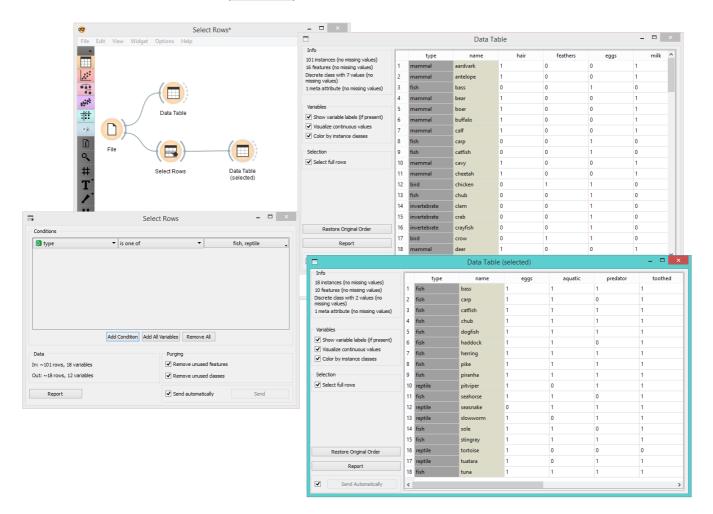
Description

This widget selects a subset from an input data set, based on user-defined conditions. Instances that match the selection rule are placed in the output *Matching Data* channel.

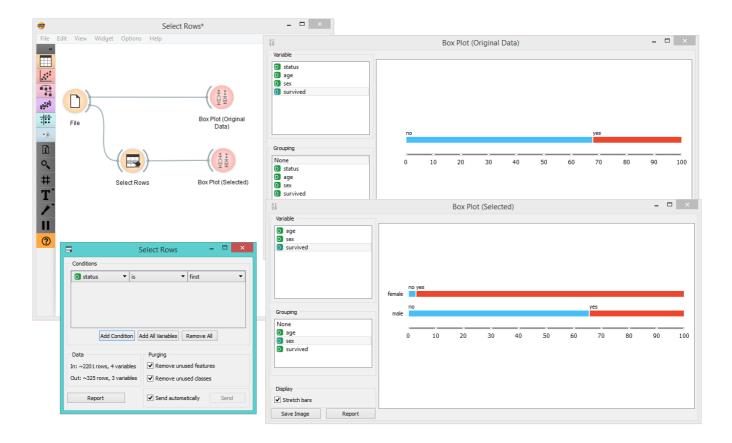
Criteria for data selection are presented as a collection of conjuncted terms (i.e. selected items are those matching all the terms in *'Conditions'*).

Condition terms are defined through selecting an attribute, selecting an operator from a list of operators, and, if needed, defining the value to be used in the condition term. Operators are different for discrete, continuous and string attributes.

- 1. Conditions you want to apply, their operators and related values
- 2. Add a new condition to the list of conditions.
- 3. Add all the possible variables at once.


- 4. Remove all the listed variables at once.
- 5. Information on the input data set and information on instances that match the condition(s)
- 6. Purge the output data.
- 7. When the Send automatically box is ticked, all changes will be automatically communicated to other widgets.
- 8. Produce a report.

Any change in the composition of the condition will update the information pane (Data Out).


If *Send automatically* is selected, then the output is updated on any change in the composition of the condition or any of its terms.

Example

In the workflow below, we used the *Zoo* data from the <u>File</u> widget and fed it into the **Select Rows** widget. In the widget, we chose to output only two animal types, namely fish and reptiles. We can inspect both the original data set and the data set with selected rows in the <u>Data Table</u> widget.

In the next example, we used the data from the *Titanic* data set and similarly fed it into the **Box Plot** widget. We first observed the entire data set based on survival. Then we selected only first class passengers in the **Select Rows** widget and fed it again into the **Box Plot**. There we could see all the first class passengers listed by their survival rate and grouped by gender.

SQL Table

Reads data from an SQL database.

Signals

Inputs:

• (None)

Outputs:

• Data

Attribute-valued data from the database

Description

The **SQL** widget accesses data stored in an SQL database. It can connect to PostgreSQL (requires <u>psycopg2</u> module) or <u>SQL Server</u> (requires <u>pymssql</u> module).

🗉 SQL Table	?	Х
Server		
PostgreSQL		-
Server		
Database[/Schema]		
Username		
Password		
-	U U	•
Auto-discover discrete variables		
Download data to local memory		
Report		

Transpose

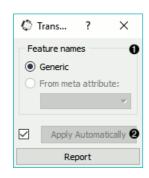
Transposes a data table.

Signals

Inputs:

• Data

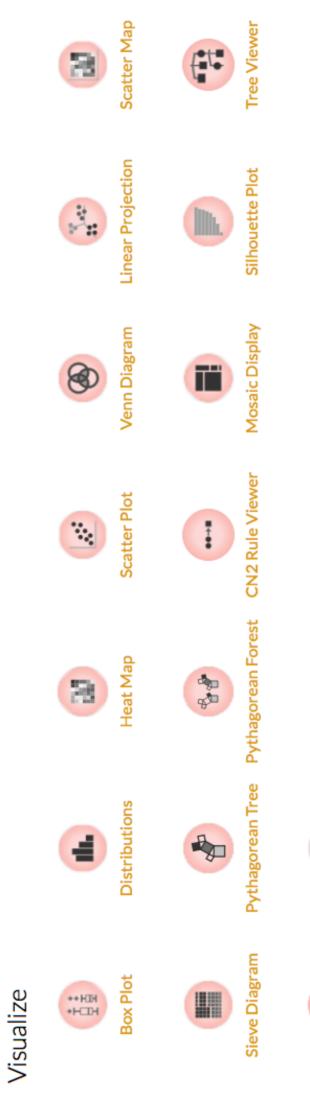
A data set.


Outputs:

• Data

Transposed data set

Description


Transpose widget transposes data table.

Example

This is a simple workflow showing how to use **Transpose**. Connect the widget to <u>File</u> widget. The output of **Transpose** is a transposed data table with rows as columns and columns as rows. You can observe the result in a <u>Data Table</u>.

🤓 untitled*			_					
File Edit View Widget Options	Help							
				^				
File Data Table								
Transp	ose							
	ata Table					-		
4 insta	ances (no missing values) eatures (no missing values)	iris 1	Feature name	Feature 001 Iris-setosa	Feature 002 Iris-setosa	Feature 003 Iris-setosa	Feature 004 Iris-setosa	
	No target variable.		sepal length	5.100	4.900	4.700	4.600	
1 met	a attribute (no missing values)	2	sepal width	3.500	3.000	3.200	3.100	
	blaa	3	petal length	1.400	1.400	1.300	1.500	
~	now variable labels (if present)	4	petal width	0.200	0.200	0.200	0.200	
	sualize continuous values							
to be to be a	olor by instance classes							
Selec	tion							
✓ Se	elect full rows							
	Restore Original Order							
	Report							
	Send Automatically	<					>	

FreeViz

Box Plot

Shows distribution of attribute values.

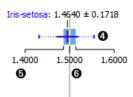
Signals

Inputs:

• Data

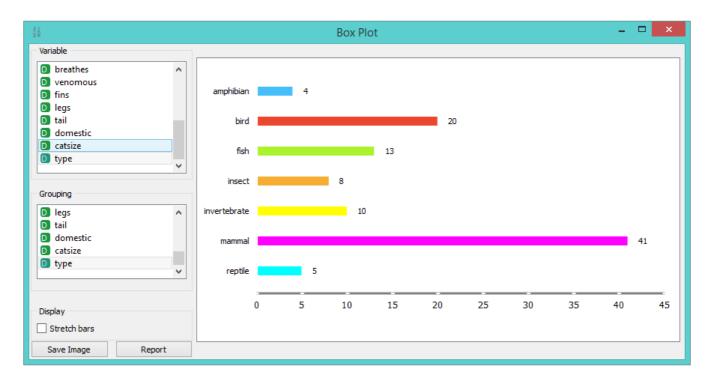
An input data set

Outputs:

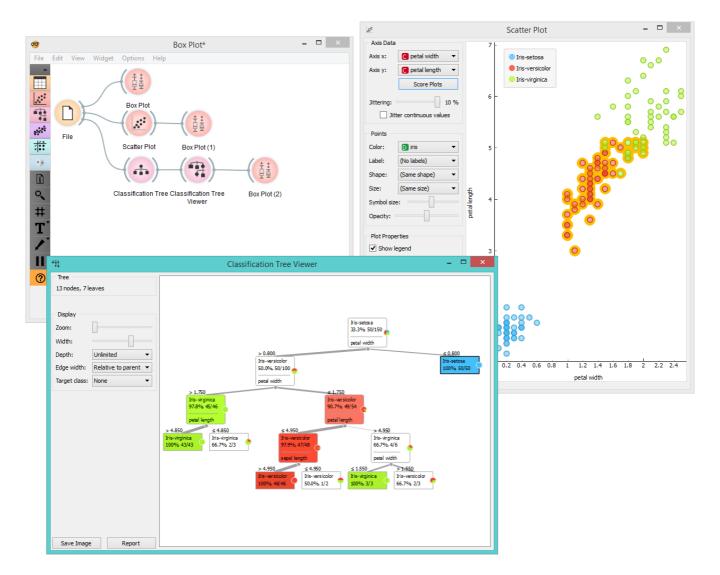

• (None)

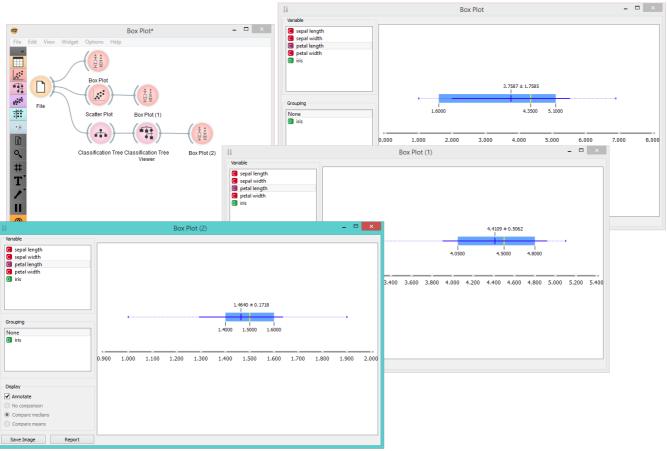
Description

The **Box Plot** widget shows the distributions of attribute values. It is a good practice to check any new data with this widget to quickly discover any anomalies, such as duplicated values (e.g. gray and grey), outliers, and alike.


- 1. Select the variable you want to see plotted.
- 2. Choose *Grouping* to see <u>box plots</u> displayed by class.
- 3. When instances are grouped by class, you can change the display mode. Annotated boxes will display the end values, the mean and the median, while compare medians and compare means will, naturally, compare the selected value between class groups.

For continuous attributes the widget displays:


- 4. The mean (the dark blue vertical line)
- 5. Border values for the standard deviation of the mean. The blue highlighted area is the entire standard deviation of the mean.
- 6. The median (yellow vertical line). The thin blue line represents the area between the first (25%) and the third (75%) quantile, while the thin dotted line represents the entire range of values (from the lowest to the highest value in the data set for the selected parameter).
- 7. Save image.
- 8. Produce a report.


For discrete attributes, the bars represent the number of instances with each particular attribute value. The plot shows the number of different animal types in the *Zoo* data set: there are 41 mammals, 13 fish, 20 birds and so on.

Example

The **Box Plot** widget is most commonly used immediately after the <u>File</u> widget to observe the statistical properties of a data set. It is also useful for finding the properties of a specific data set, for instance a set of instances manually defined in another widget (e.g. <u>Scatterplot</u>) or instances belonging to some cluster or a classification tree node, as shown in the schema below.

CN2 Rule Viewer

CN2 Rule Viewer

Signals

Inputs:

• Data

Data set to filter.

CN2 Rule Classifier

CN2 Rule Classifier, including a list of induced rules.

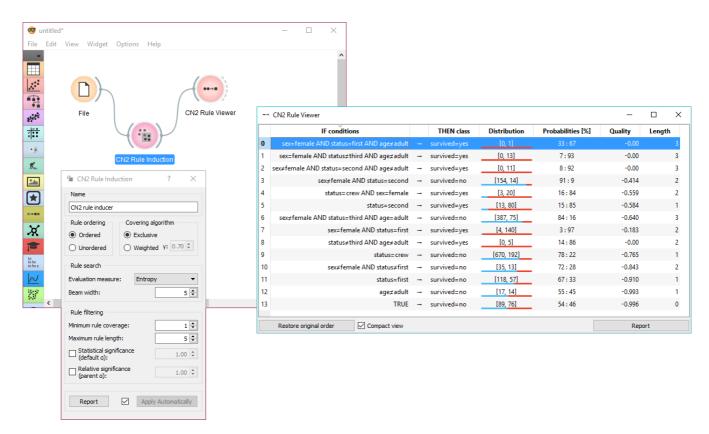
Outputs:

• Filtered Data

If data is connected, upon active selection (at least one rule is selected), filtered data is emitted. Output are data instances covered by all selected rules.

Description

A widget that displays <u>CN2 classification</u> rules. If data is also connected, upon rule selection, one can analyze which instances abide to the conditions.


	Rule Viewer – 🗆 🗙								
	IF conditions		THEN class	Distribution	Probabilities	Quality	Length		
0	sex=female AND status=first AND age≠ad	→	survived=yes	[0, 1]	0.33 : 0.67	-0.00	3		
1	sex=female AND status≠third AND age≠a		survived=yes	[0, 13]	0.07:0.93	-0.00	3		
2	sex≠female AND status=second AND age	→	survived=yes	[0, 11]	0.08:0.92	-0.00	3		
3	sex≠female AND status=second		survived=no	[154, 14]	0.91:0.09	-0.414	2		
4	status=crew AND sex=female	→	survived=yes	[3, 20]	0.16:0.84	-0.559	2		
5	status=second		survived=yes	[13, 80]	0.15 : 0.85	-0.584	1		
6	sex≠female AND status=third AND age=a	-	survived=no	[387, 75]	0.84 : 0.16	-0.640	3		
7	sex=female AND status=first		survived=yes	[4, 140]	0.03 : 0.97	-0.183	2		
8	status≠third AND age≠adult		survived=yes	[0, 5]	0.14 : 0.86	-0.00	2		
9	status=crew	→	survived=no	[670, 192]	0.78:0.22	-0.765	1		
10	sex≠female AND status≠first		survived=no	[35, 13]	0.72:0.28	-0.843	2		
11	status=first	→	survived=no	[118, 57]	0.67:0.33	-0.910	1		
12	age≠adult		survived=no	[17, 14]	0.55:0.46	-0.993	1		
13	TRUE	-	survived=no	[89, 76]	0.54 : 0.46	-0.996	0		
	Restore original order 🛛 🗹 Compact view		Report	0					

- 1. Original order of induced rules can be restored.
- 2. When rules are many and complex, the view can appear packed. For this reason, *compact view* was implemented, which allows a flat presentation and a cleaner inspection of rules.
- 3. Click *Report* to bring up a detailed description of the rule induction algorithm and its parameters, the data domain, and induced rules.

Additionally, upon selection, rules can be copied to clipboard by pressing the default system shortcut (ctrl+C, cmd+C).

Examples

In the schema below, the most common use of the widget is presented. First, the data is read and a CN2 rule classifier is trained. We are using *titanic* data set for the rule constrution. The rules are then viewed using the <u>Rule Viewer</u>. To explore different CN2 algorithms and understand how adjusting parameters influences the learning process, **Rule Viewer** should be kept open and in sight, while setting the CN2 learning algorithm (the presentation will be updated promptly).

Selecting a rule outputs filtered data instances. These can be viewed in a Data Table.

Distributions

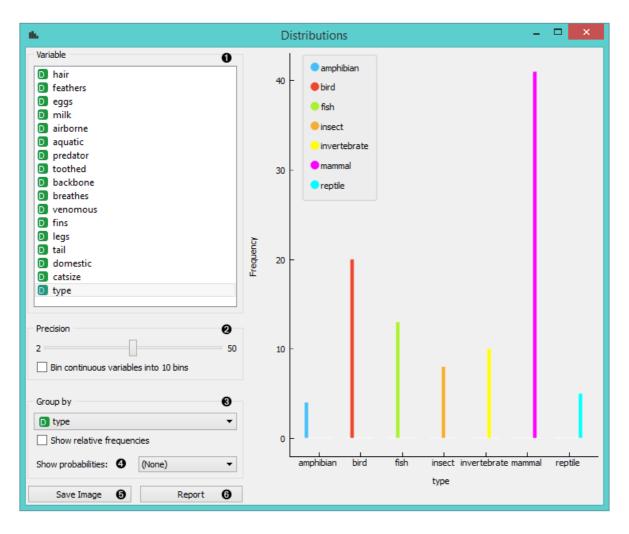
Displays value distributions for a single attribute.

Signals

Inputs:

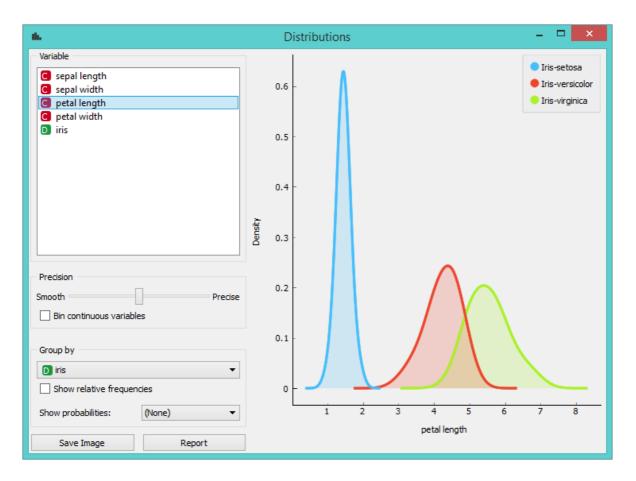
• Data

An input data set.

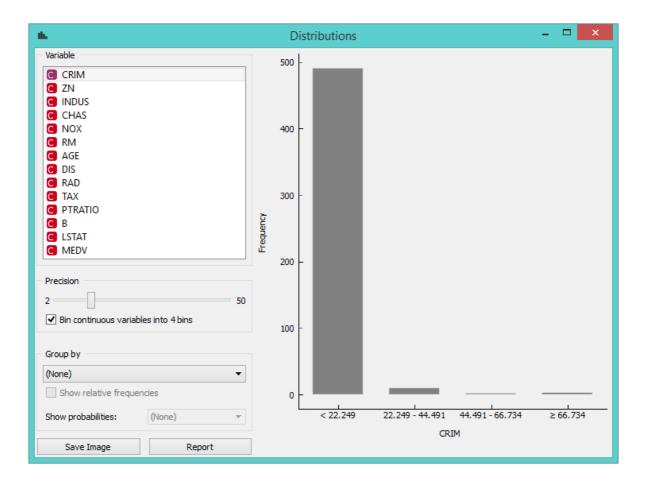

Outputs:

• (None)

Description


The **Distributions** widget displays the <u>value distribution</u> of discrete or continuous attributes. If the data contains a class variable, distributions may be conditioned on the class.

For discrete attributes, the graph displayed by the widget shows how many times (e.g., in how many instances) each attribute value appears in the data. If the data contains a class variable, class distributions for each of the attribute values will be displayed as well (like in the snapshot below). In order to create this graph, we used the *Zoo* data set.



- 1. A list of variables for distributions display
- 2. If *Bin continuous variables* is ticked, the widget will discretize continuous variables by assigning them to intervals. The number of intervals is set by precision scale. Alternatively, you can set smoothness for the distribution curves of continuous variables.
- 3. The widget may be requested to display value distributions only for instances of certain class (*Group by*). *Show relative frequencies* will scale the data by percentage of the data set.
- 4. Show probabilities.
- 5. Save image saves the graph to your computer in a .svg or .png format.
- 6. Produce a report.

For continuous attributes, the attribute values are displayed as a function graph. Class probabilities for continuous attributes are obtained with gaussian kernel density estimation, while the appearance of the curve is set with the *Precision* bar (smooth or precise). For the purpose of this example, we used the *Iris* data set.

In class-less domains, the bars are displayed in gray. Here we set *Bin continuous variables into 10 bins*, which distributes variables into 10 intervals and displays averages of these intervals as histograms (see 2. above). We used the *Housing* data set.

FreeViz

Displays FreeViz projection.

Signals

Inputs:

• Data

An input data set.

Data Subset

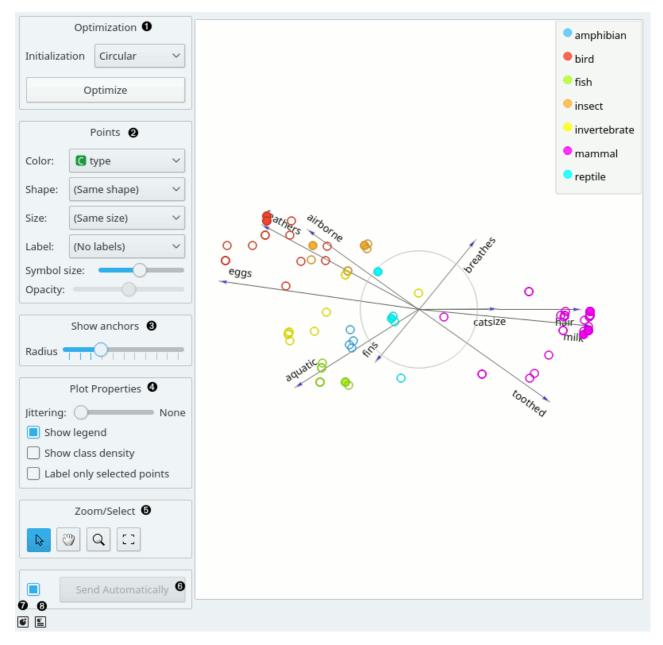
A subset of instances from the input data set.

Outputs:

Selected Data

A subset of instances that the user manually selected from the freeviz plot.

• Data

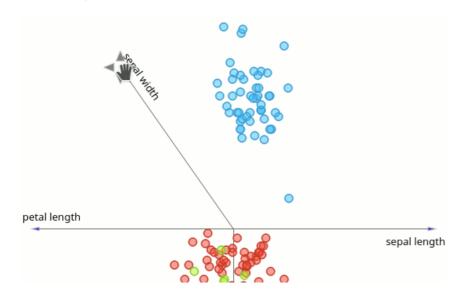

Data with an additional column showing whether a point is selected. If more than one group is selected then also the group name is written instead.

• Components

FreeViz vectors

Description

FreeViz uses a paradigm borrowed from particle physics: points in the same class attract each other, those from different class repel each other, and the resulting forces are exerted on the anchors of the attributes, that is, on unit vectors of each of the dimensional axis. The points cannot move (are projected in the projection space), but the attribute anchors can, so the optimization process is a hill-climbing optimization where at the end the anchors are placed such that forces are in equilibrium. The button Optimize is used to invoke the optimization process. The result of the optimization may depend on the initial placement of the anchors, which can be set in a circle, arbitrary or even manually. The later also works at any stage of optimization, and we recommend to play with this option in order to understand how a change of one anchor affects the positions of the data points. In any linear projection, projections of unit vector that are very short compared to the others indicate that their associated attribute is not very informative for particular classification task. Those vectors, that is, their corresponding anchors, may be hidden from the visualization using Radius slider in Show anchors box.

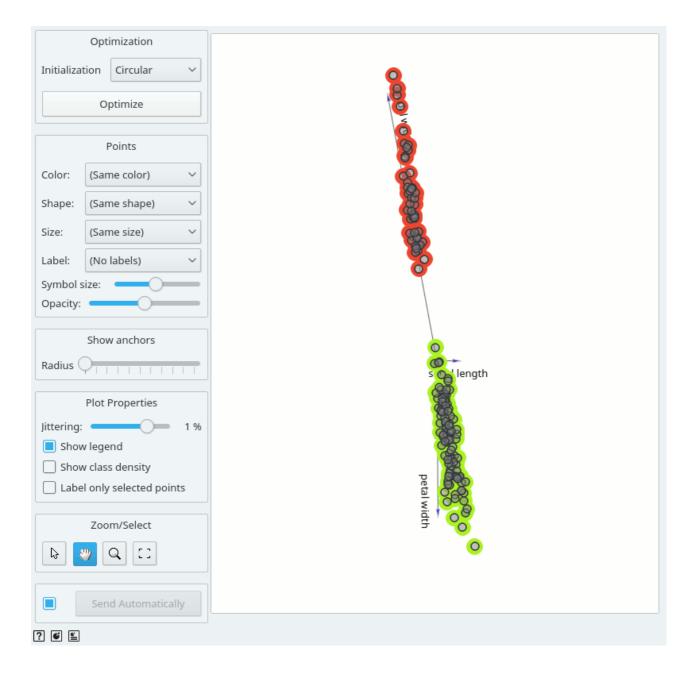

- 1. Two initial positions of anchors are possible: random and circular. Optimization moves anchors in an optimal position.
- 2. Set the color of the displayed points (you will get colors for discrete values and grey-scale points for continuous). Set label, shape and size to differentiate between points. Set symbol size and opacity for all data points.
- 3. Anchors inside a circle are hidden. Circle radius can be be changed using a slider.
- 4. Adjust plot properties:
 - Set jittering to prevent

the dots from overlapping (especially for discrete attributes).

- Show legend displays a legend on the right. Click and drag the legend to move it.
- Show class density colors the graph by class (see the screenshot below).
- Label only selected points allows you to select individual data instances and label them.
- 5. *Select, zoom, pan and zoom to fit* are the options for exploring the graph. The manual selection of data instances works as an angular/square selection tool. Double click to move the projection. Scroll in or out for zoom.
- 6. If Send automatically is ticked, changes are communicated automatically. Alternatively, press Send.
- 7. Save Image saves the created image to your computer in a .svg or .png format.

8. Produce a report.

Manually move anchors



One can manually move anchors. Use a mouse pointer and hover above the end of an anchor. Click the left button and then you can move selected anchor where ever you want.

Selection

Selection can be used to manually defined subgroups in the data. Use Shift modifier when selecting data instances to put them into a new group. Shift + Ctrl (or Shift + Cmd on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.

Explorative Data Analysis

The **FreeViz**, as the rest of Orange widgets, supports zooming-in and out of part of the plot and a manual selection of data instances. These functions are available in the lower left corner of the widget. The default tool is *Select*, which selects data instances within the chosen rectangular area. *Pan* enables you to move the plot around the pane. With *Zoom* you can zoom in and out of the pane with a mouse scroll, while *Reset zoom* resets the visualization to its optimal size. An example of a simple schema, where we selected data instances from a rectangular region and sent them to the **Data Table** widget, is shown below.

									X	_	FreeViz V ^
		Data		····	ed Data → Data					Optimization	• 0
	File		Free	/iz		Data Table			Initializa	tion Circular ~	•1
					е			~ ^ 🕲		Optimize	
m	eter narrow	freeviz-x	freeviz-y	age	gender	chest pain	rest SBP	chc		Points	
1 1		-0.113	0.715	67	male	asymptomatic	160	286		Points	
2 1		-0.247	0.749	67	male	asymptomatic	120	229	Color:	C diameter narrow ∨	
3 1		-0.089	0.533	53	male	asymptomatic	140	203	Shape:	(Same shape) V	
4 1		-0.251	0.739	60	male	asymptomatic	130	206			
5 1		-0.267	0.656	40	male	asymptomatic	110	167	Size:	(Same size) V	
6 1		-0.204	0.492	60	male	asymptomatic	117	230	Label:	(No labels) 🗸 🗸	
7 1		-0.250	0.641	43	male	asymptomatic	120	177	Symbol s	ize:	
8 1		-0.359	0.774	57	male	asymptomatic	150	276	Opacity:		
9 1		-0.264	0.618	55	male	asymptomatic	132	353			gender
10 1		-0.277	0.542	60	male	asymptomatic	130	253		Show anchors	
11 1		-0.247	0.711	54	male	asymptomatic	124	266	Radius •	<u> </u>	
12 1		-0.274	0.806	58	male	asymptomatic	128	216			
13 1		-0.215	0.700	60	male	asymptomatic	145	282		Plot Properties	
14 1		-0.143	0.625	59	male	asymptomatic	170	326	Jittering:	O None	
15 1		-0.334	0.784	62	male	asymptomatic	120	267	🔳 Shov	/ legend	
16 1		-0.213	0.650	60	male	asymptomatic	125	258	Shov	class density	<u>କ</u> ୍ଷ ୍
17 1		-0.209	0.538	58	male	asymptomatic	150	270	Labe	l only selected points	chest pain
18 1		-0.271	0.492	52	male	asymptomatic	128	255			Stpa
19 1		-0.227	0.643	59	male	asymptomatic	110	239		Zoom/Select	in .
20 1		-0.272	0.497	59	male	asymptomatic	140	177	3) Q []	
21 1		-0.277	0.650	61	male	asymptomatic	120	260			
22 1		-0.155	0.612	63	male	asymptomatic	130	330		Send Automatically	
< 💶								>	?		

Geo Map

Show data points on a world map.

Signals

Inputs:

• Data

An input data set.

• Data Subset

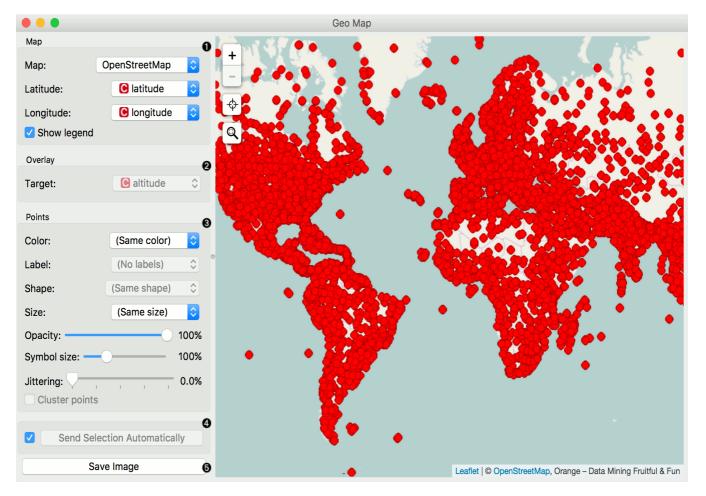
A subset of instances from the input data set.

• Learner

A learning algorithm (classification or regression).

Outputs:

Selected Data

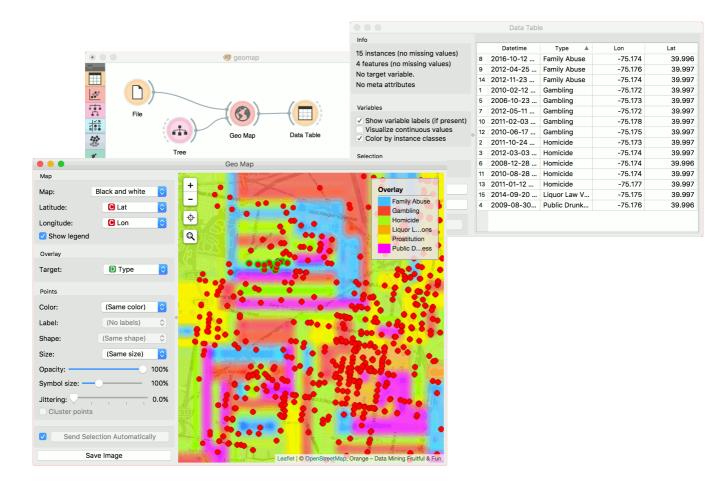

A subset of instances that the user has manually selected from the map.

• Data

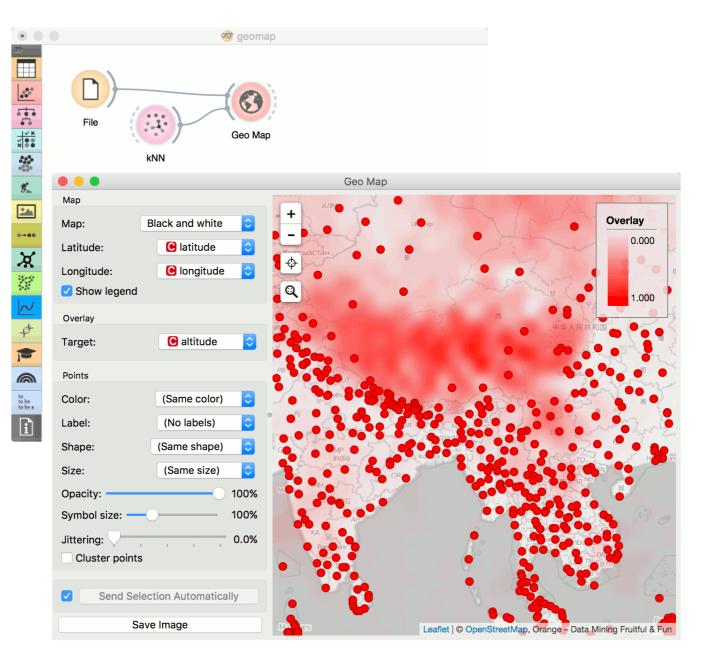
Data set with an appended meta attribute specifying selected and unselected data.

Description

Geo Map widget maps geo-spatial data on a world map. It only works on data sets containing latitude and longitude variables. It also enables class predictions when a learner is provided on the input.


- 1. Define map properties: Set the type of *map*: Black and White, <u>OpenStreetMap</u>, Topographic, Satellite, Print, Light, Dark, Railyways and Watercolor. Set latitude and longitude attributes, if the widget didn't recognize them automatically. Latitude values should be between -90(S) and 90(N) and longitude values between -180(W) and 180(E).
- 2. Overlay: Set the target (class) for predictive mapping. A learner has to be provided on the input. The classifier is trained on latitude and longitude pairs only (i.e. it maps lat/lon pairs to the selected attribute).
- 3. Set point parameters: *Color*: color of data points by attribute values *Label*: label data points with an attribute (available when zoomed in) *Shape*: shape of data points by attribute (available when zoomed in) *Size*: size of data points by attribute Opacity: set transparency of data points Symbol size: size of data points (small to large) Jittering: disperse overlaid data points Cluster points: cluster neighboring points with <u>naive greedy clustering</u> (available when less than 600 points are in view)
- 4. If *Send Selection Automatically* is ticked, changes are communicated automatically. Alternatively, click *Send Selection. Save image* saves the image to your computer in a .svg or .png format.

Note:


To select a subset of points from the map, hold Shift and draw a rectangle around the point you want to output.

Examples

In the first example we will model class predictions on a map. We will use *philadelphia-crime* data set, load it with File widget and connect it to **Map**. We can already observe the mapped points in Map. Now, we connect Tree to Map and set target variable to Type. This will display the predicted type of crime for a specific region of Philadelphia city (each region will be colored with a corresponding color code, explained in a legend on the right).

The second example uses <u>global-airports.csv</u> data. Say we somehow want to predict the altitude of the area based soley on the latitude and longitude. We again load the data with <u>File</u> widget and connect it to Map. Then we use a regressor, say, <u>KNN</u> and connect it to Map as well. Now we set target to altitude and use Black and White map type. The model guessed the Himalaya, but mades some errors elsewhere.

Heat Map

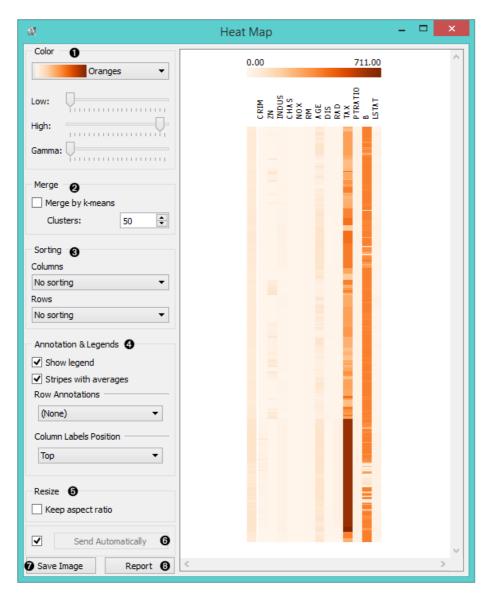
Plots a heat map for a pair of attributes.

Signals

Inputs:

• Data

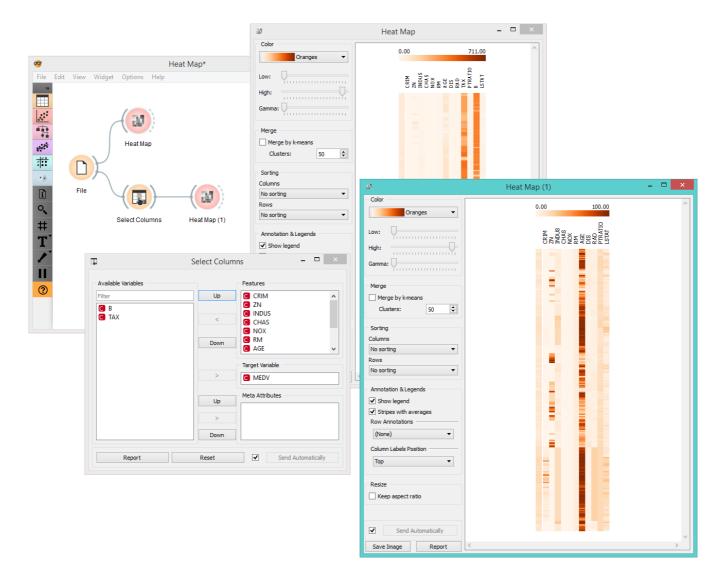
An input data set.


Outputs:

Selected Data

A subset of instances that the user has manually selected from the map.

Description


<u>Heat map</u> is a graphical method for visualizing attribute values by class in a two-way matrix. It only works on data sets containing continuous variables. The values are represented by color: the higher a certain value is, the darker the represented color. By combining class and attributes on x and y axes, we see where the attribute values are the strongest and where the weakest, thus enabling us to find typical features (discrete) or value range (continuous) for each class.

- 1. The color scheme legend. **Low** and **High** are thresholds for the color palette (low for attributes with low values and high for attributes with high values).
- 2. Merge data.
- 3. Sort columns and rows: **No Sorting** (lists attributes as found in the data set) **Clustering** (clusters data by similarity) - **Clustering with ordered leaves** (maximizes the sum of similarities of adjacent elements)
- 4. Set what is displayed in the plot in **Annotation & Legend**. If *Show legend* is ticked, a color chart will be displayed above the map. - If *Stripes with averages* is ticked, a new line with attribute averages will be displayed on the left. - **Row Annotations** adds annotations to each instance on the right. - **Column Label Positions** places column labels in a selected place (None, Top, Bottom, Top and Bottom).
- 5. If Keep aspect ratio is ticked, each value will be displayed with a square (proportionate to the map).
- 6. If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.
- 7. Save image saves the image to your computer in a .svg or .png format.
- 8. Produce a report.

Example

The **Heat Map** below displays attribute values for the *Housing* data set. The aforementioned data set concerns the housing values in the suburbs of Boston. The first thing we see in the map are the 'B' and 'Tax' attributes, which are the only two colored in dark orange. The 'B' attribute provides information on the proportion of blacks by town and the 'Tax' attribute informs us about the full-value property-tax rate per \$10,000. In order to get a clearer heat map, we then use the <u>Select Columns</u> widget and remove the two attributes from the data set. Then we again feed the data to the **Heat map**. The new projection offers additional information. By removing 'B' and 'Tax', we can see other deciding factors, namely 'Age' and 'ZN'. The 'Age' attribute provides information on the proportion of owner-occupied units built prior to 1940 and the 'ZN' attribute informs us about the proportion of non-retail business acres per town.

The **Heat Map** widget is a nice tool for discovering relevant features in the data. By removing some of the more pronounced features, we came across new information, which was hiding in the background.

References

Housing Data Set

Linear Projection

A linear projection method with explorative data analysis.

Signals

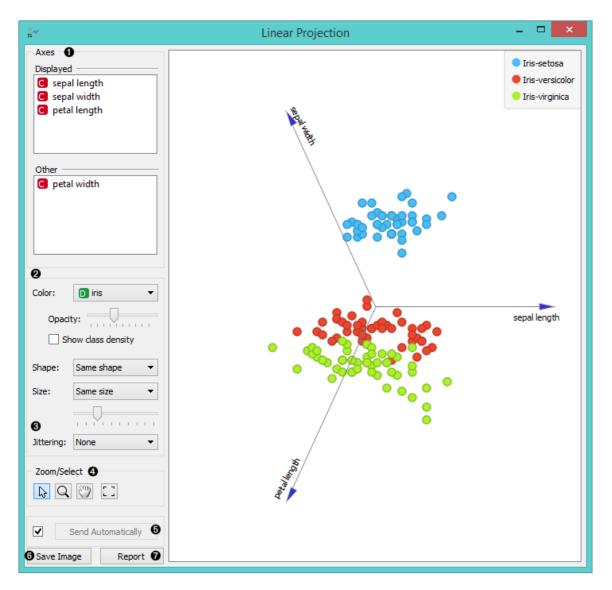
Inputs:

• Data

An input data set

• Data Subset

A subset of data instances


Outputs:

Selected Data

A data subset that the user has manually selected in the projection.

Description


This widget displays <u>linear projections</u> of class-labeled data. Consider, for a start, a projection of the *Iris* data set shown below. Notice that it is the sepal width and sepal length that already separate *Iris setosa* from the other two, while the petal length is the attribute best separating *Iris versicolor* from *Iris virginica*.

- 1. Axes in the projection that are displayed and other available axes.
- 2. Set the color of the displayed dots (you will get colored dots for discrete values and grey-scale dots for continuous). Set opacity, shape and size to differentiate between instances.
- 3. Set jittering to prevent the dots from overlapping (especially for discrete attributes).
- 4. *Select, zoom, pan* and *zoom to fit* options for exploring the graph. Manual selection of data instances works as a non-angular/free-hand selection tool. Double click to move the projection. Scroll in or out for zoom.
- 5. When the box is ticked (*Auto commit is on*), the widget will communicate the changes automatically. Alternatively, click *Commit*.
- 6. Save Image saves the created image to your computer in a .svg or .png format.
- 7. Produce a report.

Example

The **Linear Projection** widget works just like other visualization widgets. Below, we connected it to the File widget to see the set projected on a 2-D plane. Then we selected the data for further analysis and connected it to the Data Table widget to see the details of the selected subset.

References

Koren Y., Carmel L. (2003). Visualization of labeled data using linear transformations. In Proceedings of IEEE Information Visualization 2003, (InfoVis'03). Available <u>here</u>.

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics, 8(1), 32-44. Abstract here.

Mosaic Display

Display data in a mosaic plot.

Signals

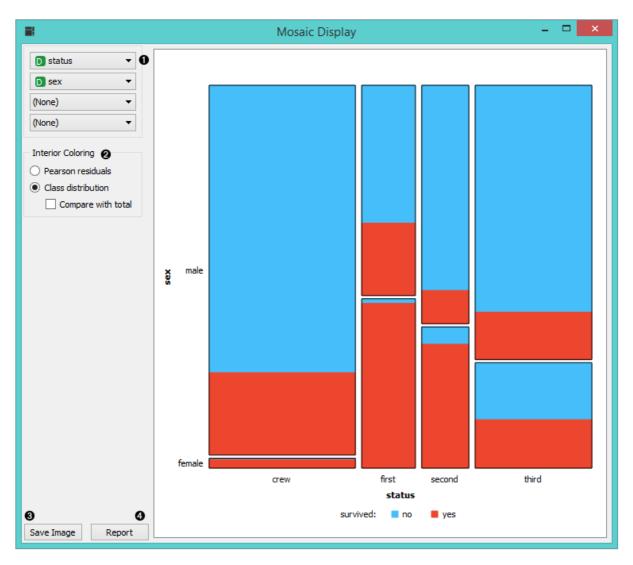
Inputs:

• Data

An input data set.

• Data subset

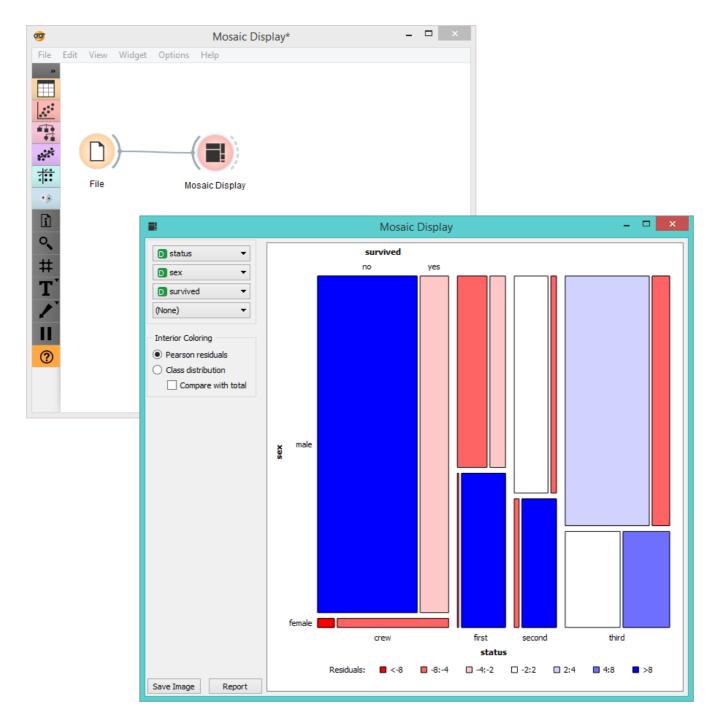
An input data subset.


Outputs:

• Selected data

A subset of instances that the user has manually selected from the plot.

Description


The **Mosaic plot** is a graphical representation of a two-way frequency table or a contingency table. It is used for visualizing data from two or more qualitative variables and was introduced in 1981 by Hartigan and Kleiner and expanded and refined by Friendly in 1994. It provides the user with the means to more efficiently recognize relationships between different variables. If you wish to read up on the history of Mosaic Display, additional reading is available here.

- 1. Select the variables you wish to see plotted.
- 2. Select interior coloring. You can color the interior according to class or you can use the *Pearson residual*, which is the difference between observed and fitted values, divided by an estimate of the standard deviation of the observed value. If *Compare to total* is clicked, a comparison is made to all instances.
- 3. Save image saves the created image to your computer in a .svg or .png format.
- 4. Produce a report.

Example

We loaded the *titanic* data set and connected it to the **Mosaic Display** widget. We decided to focus on two variables, namely status, sex and survival. We colored the interiors according to Pearson residuals in order to demonstrate the difference between observed and fitted values.

We can see that the survival rates for men and women clearly deviate from the fitted value.

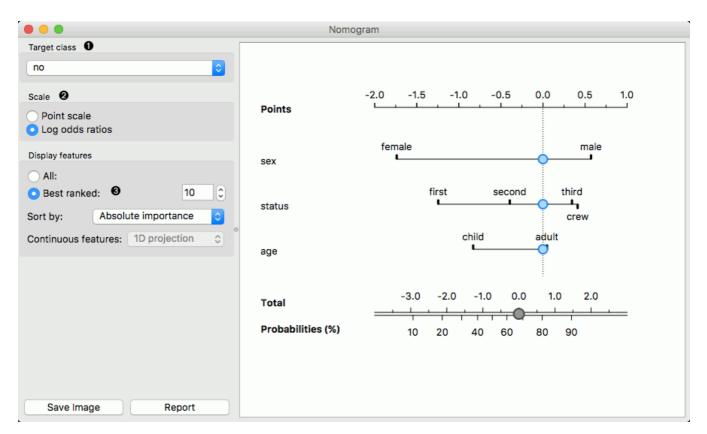
Nomogram

Nomograms for visualization of Naive Bayes and Logistic Regression classifiers.

Signals

Inputs:

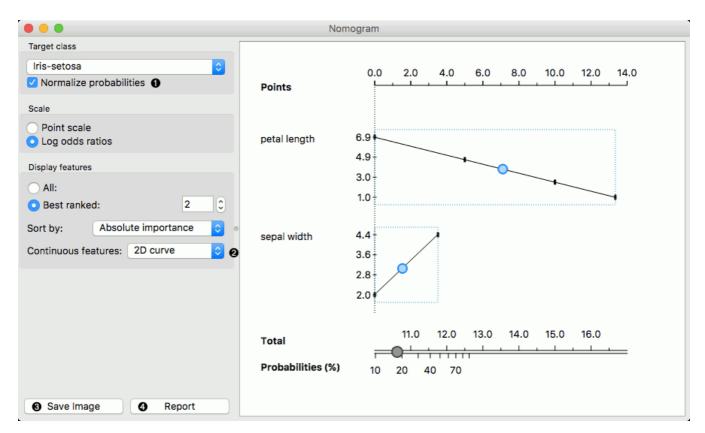
• Classifier


A trained classifier (Naive Bayes or Logistic regression).

• Data

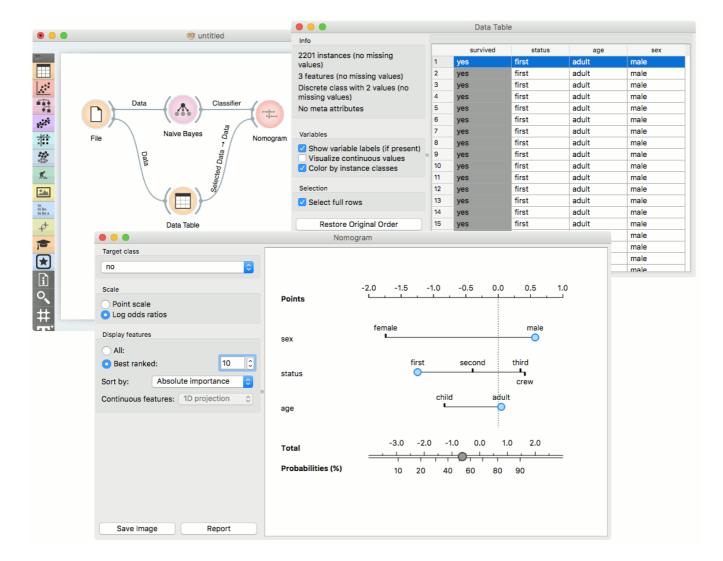
Data instance.

Description


The **Nomogram** enables some classifier's (more precisely Naive Bayes classifier and Logistic Regression classifier) visual representation. It offers an insight into the structure of the training data and effects of the attributes on the class probabilities. Besides visualization of the classifier, the widget offers interactive support to prediction of class probabilities. A snapshot below shows the nomogram of the Titanic data set, that models the probability for a passenger not to survive the disaster of the Titanic.

- 1. Select the target class you want to model the probability for.
- 2. By default Scale is set to Log odds ration. For easier understanding and interpretation option Point scale can be used. The unit is obtained by re-scaling the log odds so that the maximal absolute log odds ratio in the nomogram represents 100 points.
- 3. When there are to many attributes in the plotted data set, you can choose to display only best ranked ones. It is possible to choose from 'No sorting', 'Name', 'Absolute importance', 'Positive influence' and 'Negative influence'

for Naive Bayes representation and from 'No sorting', 'Name' and 'Absolute importance' for Logistic Regression representation.



- 1. The probability for the chosen target class is computed by 1. vs. all principle, which should be taken in consideration when dealing with multiclass data (alternating probabilities do not sum to 1). To avoid this inconvenience, you can choose to normalize probabilities.
- 2. Continuous attributes can be plotted in 2D (only for Logistic Regression).
- 3. Save image.
- 4. Produce a report.

Example

The **Nomogram** widget should be used immediately after trained classifier widget (e.g. <u>Naive Bayes</u>. It can also be passed a data instance using any widget that enables selection (e.g. <u>Data Table</u>) as shown in the workflow below.

Referring to the Titanic data set once again, 1490 (68%) of passengers on Titanic, of 2201 in total, died. To make a prediction, the contribution of each attribute is measured as a point score and the individual point scores are summed to determine the probability. When the value of the attribute is unknown, its contribution is 0 points. Therefore, not knowing anything about the passenger, the total point score is 0, and the corresponding probability equals to the unconditional prior. The nomogram in the example shows the case when we know that the passenger is a male adult from the first class. The points sum to -0.36, with a corresponding probability of not surviving of about 53%.

Pythagorean Forest

Pythagorean forest for visualising random forests.

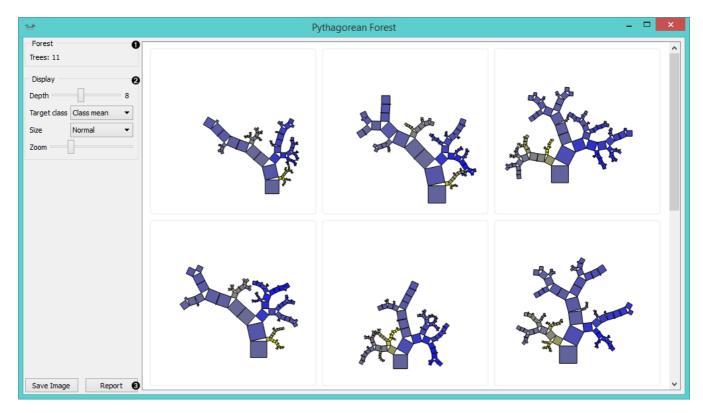
Signals

Inputs:

Random Forest

Classification / regression tree models as random forest.

Outputs:


• Tree

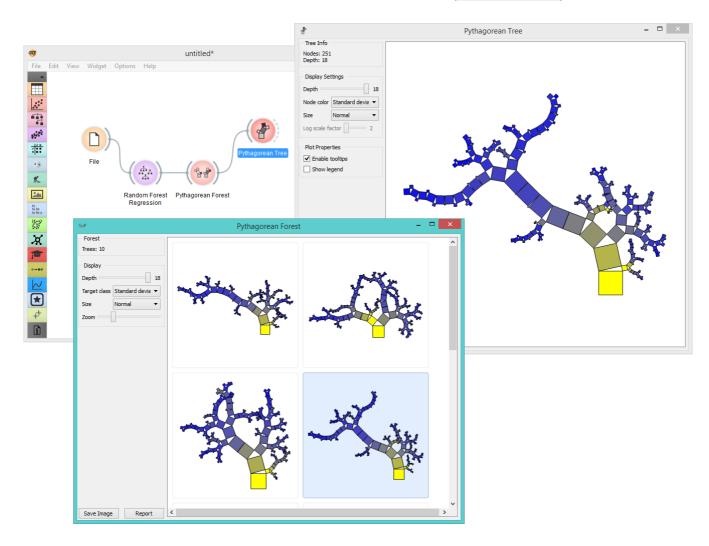
A selected classification / regression tree model.

Description

Pythagorean Forest shows all learned decision tree models from <u>Random Forest</u> widget. It displays then as Pythagorean trees, each visualization pertaining to one randomly constructed tree. In the visualization, you can select a tree and display it in <u>Pythagorean Tree</u> wigdet. The best tree is the one with the shortest and most strongly colored branches. This means few attributes split the branches well.

Widget displays both classification and regression results. Classification requires discrete target variable in the data set, while regression requires a continuous target variable. Still, they both should be fed a Tree on the input.

- 1. Information on the input random forest model.
- 2. Display parameters:


- *Depth*: set the depth to which the trees are grown.
- *Target class*: set the target class for coloring the trees. If *None* is selected, tree will be white. If the input is a classification tree, you can color nodes by their respective class. If the input is a regression tree, the options are *Class mean*, which will color tree nodes by the class mean value and *Standard deviation*, which will color then by the standard deviation value of the node.
- *Size*: set the size of the nodes. *Normal* will keep nodes the size of the subset in the node. *Square root* and *Logarithmic* are the respective transformations of the node size.
- $\circ~$ Zoom: allows you to se the size of the tree visualizations.

3. Save Image: save the visualization to your computer as a .svg or .png file. Report: produce a report.

Example

Pythagorean Forest is great for visualizing several built trees at once. In the example below, we've used *housing* data set and plotted all 10 trees we've grown with <u>Random Forest</u>. When changing the parameters in Random Forest, visualization in Pythagorean Forest will change as well.

Then we've selected a tree in the visualization and inspected it further with Pythagorean Tree widget.

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing Hierarchies. In IVAPP '14 Proceedings of the 5th International Conference on Information Visualization Theory and Applications, 17-28.

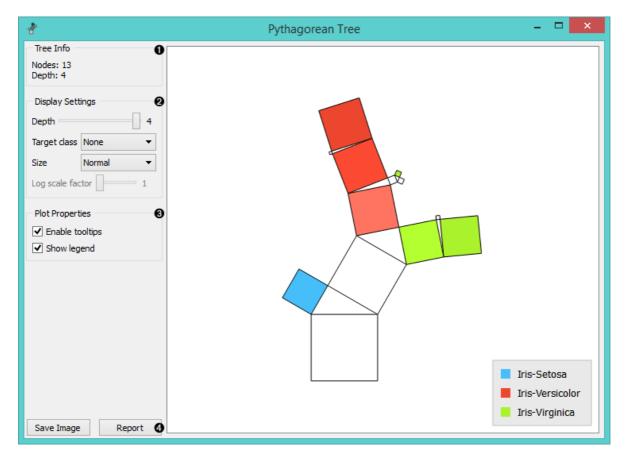
Pythagorean Tree

Pythagorean tree visualisation for classification or regression trees.

Signals

Inputs:

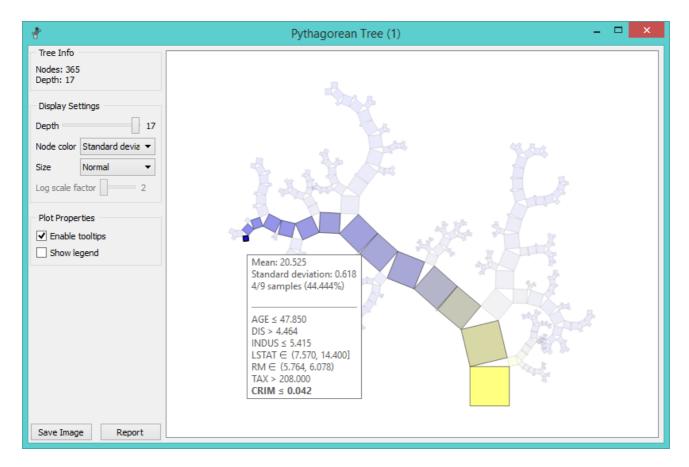
• Tree


A decision tree model.

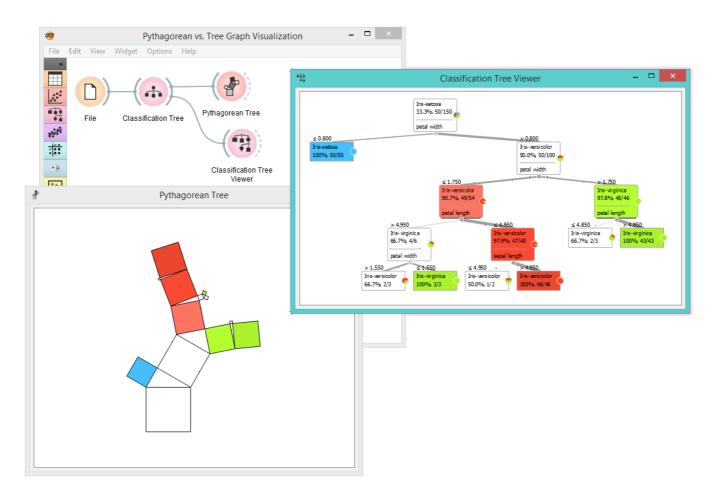
Selected Data

A subset of instances that the user has manually selected from the Pythagorean tree.

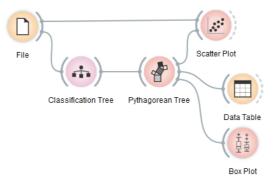
Description


Pythagorean Trees are plane fractals that can be used to depict general tree hierarchies as presented in an article by <u>Fabian Beck and co-authors</u>. In our case, they are used for visualizing and exploring tree models, such as <u>Tree</u>.

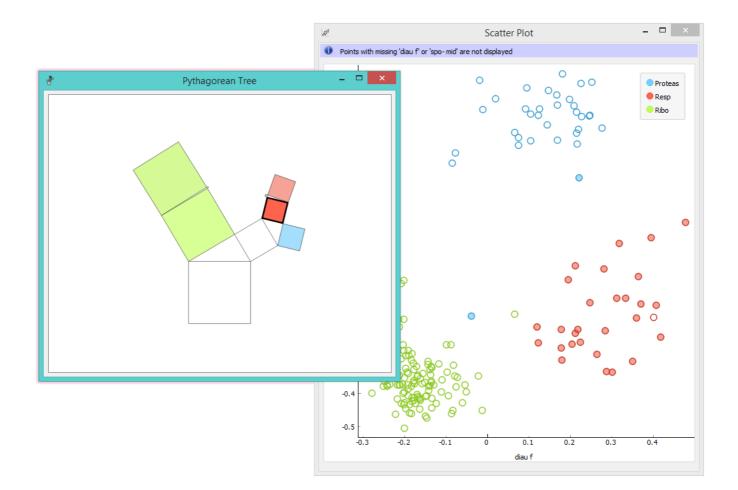
- 1. Information on the input tree model.
- 2. Visualization parameters:
 - *Depth*: set the depth of displayed trees.
 - *Target class* (for classification trees): the intensity of the color for nodes of the tree will correspond to the probability of the target class. If *None* is selected, the color of the node will denote the most probable class.


- *Node color* (for regression trees): node colors can correspond to mean or standard deviation of class value of the training data instances in the node.
- *Size*: define a method to compute the size of the square representing the node. *Normal* will keep node sizes correspond to the size of training data subset in the node. *Square root* and *Logarithmic* are the respective transformations of the node size.
- *Log scale factor* is only enabled when *logarithmic* transformation is selected. You can set the log factor between 1 and 10.
- 3. Plot properties:
 - Enable tooltips: display node information upon hovering.
 - *Show legend*: shows color legend for the plot.
- 4. Reporting:
 - *Save Image*: save the visualization to a SVG or PNG file.
 - *Report*: add visualization to the report.

Pythagorean Tree can visualize both classification and regression trees. Below is an example for regression tree. The only difference between the two is that regression tree doesn't enable coloring by class, but can color by class mean or standard deviation.



Example


The workflow from the screenshot below demonstrates the difference between <u>Tree Viewer</u> and Pythagorean Tree. They can both visualize <u>Tree</u>, but Pythagorean visualization takes less space and is more compact, even for a small <u>Iris flower</u> data set. For both visualization widgets, we have hidden the control area on the left by clicking on the splitter between control and visualization area.

Pythagorean Tree is interactive: click on any of the nodes (squares) to select training data instances that were associated with that node. The following workflow explores these feature.

The selected data instances are shown as a subset in the <u>Scatter Plot</u>, sent to the <u>Data Table</u> and examined in the <u>Box</u> <u>Plot</u>. We have used brown-selected data set in this example. The tree and scatter plot are shown below; the selected node in the tree has a black outline.

References

Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). <u>Generalized Pythagoras Trees for Visualizing Hierarchies</u>. In IVAPP '14 Proceedings of the 5th International Conference on Information Visualization Theory and Applications, 17-28.

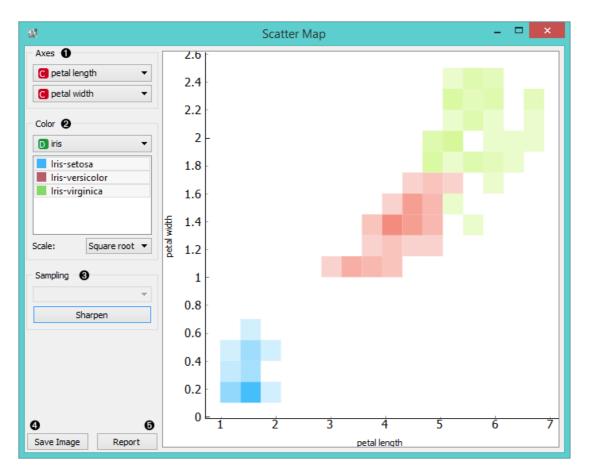
Scatter Map

Plots a scatter map for a pair of continuous attributes.

Signals

Inputs:

• Data


An input data set

Outputs:

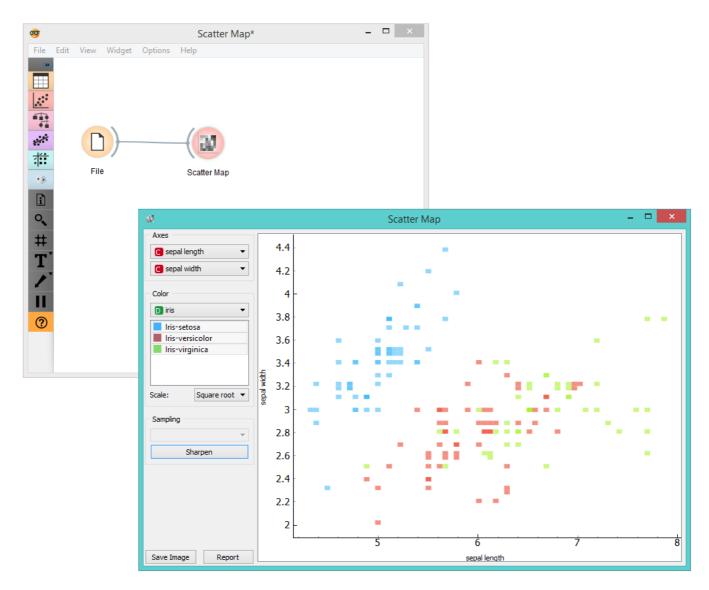
• None

Description

A <u>Scatter map</u> is a graphical method for visualizing frequencies in a two-way matrix by color. The higher the occurrence of a certain value, the darker the represented color. By combining two values on x and y axes, we see where the attribute combination is the strongest and where the weakest, thus enabling the user to find strong correlations or representative instances.

1. Select the x and y attribute to be plotted.

2. Color the plot by attribute. You can also select which attribute instances you wish to see in the visualization by clicking on them. At the bottom, you can select the color scale strength (linear, square root or logarithmic).


3. Sampling is enabled only when the widget is connected to the SQL Table widget. You can set the sampling time

for large data to speed up the analysis. *Sharpen* works for all data types and it will resize (sharpen) the squares in the plot.

- 4. Save Image saves the created image to your computer in a .svg or .png format.
- 5. Produce a report.

Example

Below, you can see an example workflow for the **Scatter Map** widget. Notice that the widget only works with continuous data, so you need to first continuize the data attributes you want to visualize. The Scatter map below displays two attributes from the *Iris* data set, namely the petal width and petal length. Here, we can see the distribution of width and length values per Iris type. You can see that the variety *Iris setosa* is distinctly separated from the other two varieties by petal width and length and that the most typical values for these attributes are around 0.2 for petal width and between 1.4 and 1.7 for petal length. This shows that petal width and length are good attributes for telling Iris setosa apart from the other two varieties.

Scatter Plot

Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.

Signals

Inputs:

• Data

An input data set.

• Data Subset

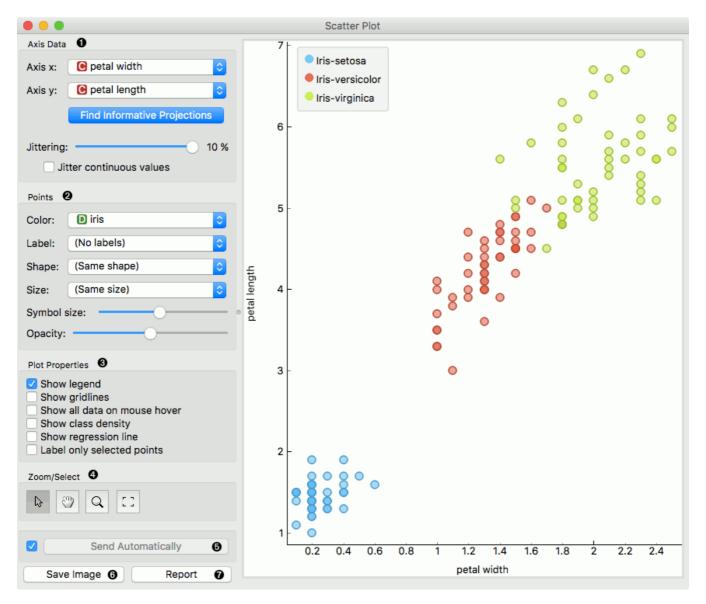
A subset of instances from the input data set.

• Features

A list of attributes.

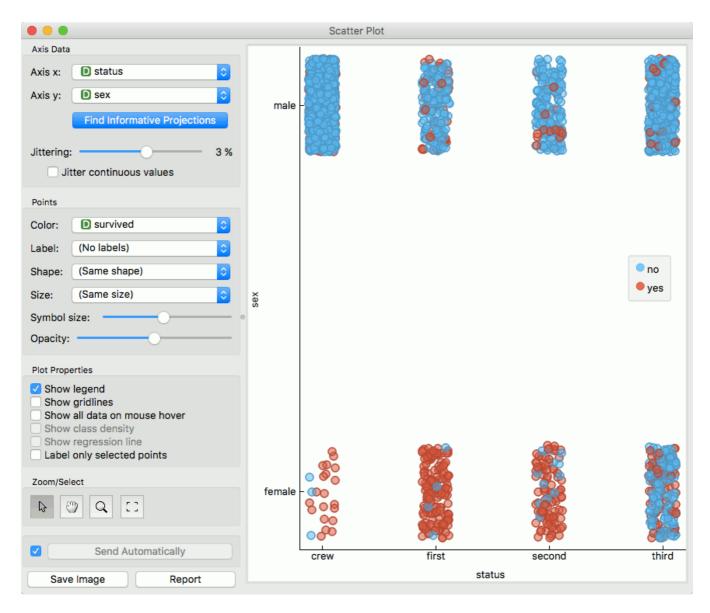
Outputs:

Selected Data


A subset of instances that the user manually selected from the scatterplot.

• Data

Data with an additional column showing whether a point is selected.


Description

The **Scatterplot** widget provides a 2-dimensional scatterplot visualization for both continuous and discrete-valued attributes. The data is displayed as a collection of points, each having the value of the x-axis attribute determining the position on the horizontal axis and the value of the y-axis attribute determining the position on the vertical axis. Various properties of the graph, like color, size and shape of the points, axis titles, maximum point size and jittering can be adjusted on the left side of the widget. A snapshot below shows the scatterplot of the *Iris* data set with the coloring matching of the class attribute.

- Select the x and y attribute. Optimize your projection by using **Rank Projections**. This feature scores attribute pairs by average classification accuracy and returns the top scoring pair with a simultaneous visualization update. Set <u>jittering</u> to prevent the dots overlapping. If *Jitter continuous values* is ticked, continuous instances will be dispersed.
- 2. Set the color of the displayed points (you will get colors for discrete values and grey-scale points for continuous). Set label, shape and size to differentiate between points. Set symbol size and opacity for all data points. Set the desired colors scale.
- 3. Adjust plot properties:
 - Show legend displays a legend on the right. Click and drag the legend to move it.
 - *Show gridlines* displays the grid behind the plot.
 - Show all data on mouse hover enables information bubbles if the cursor is placed on a dot.
 - $\circ~\mathit{Show}~\mathit{class}~\mathit{density}$ colors the graph by class (see the screenshot below).
 - $\circ~\mathit{Show}~regression~line$ draws the regression line for pair of continuous attributes.
 - $\circ \ \ Label \ only \ selected \ points \ allows \ you \ to \ select \ individual \ data \ instances \ and \ label \ them.$
- 4. *Select, zoom, pan and zoom to fit* are the options for exploring the graph. The manual selection of data instances works as an angular/square selection tool. Double click to move the projection. Scroll in or out for zoom.
- 5. If Send automatically is ticked, changes are communicated automatically. Alternatively, press Send.
- 6. Save Image saves the created image to your computer in a .svg or .png format.
- 7. Produce a report.

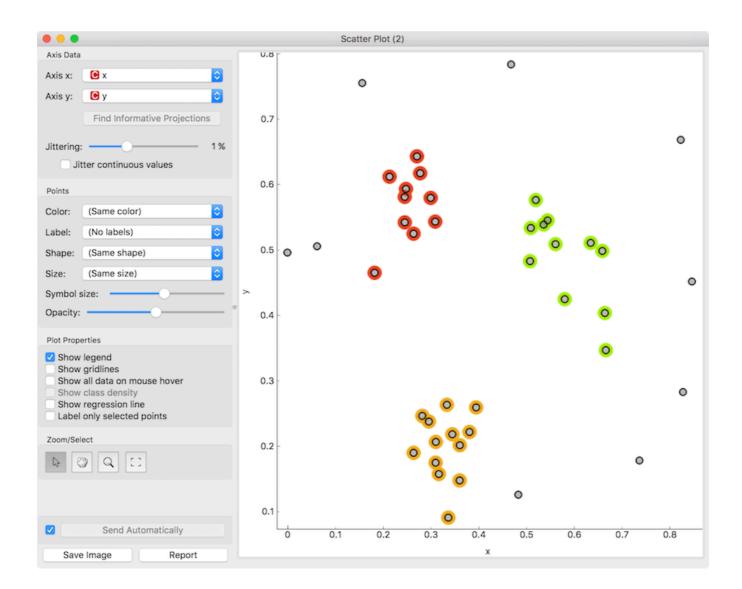
For discrete attributes, jittering circumvents the overlap of points which have the same value for both axes, and therefore the density of points in the region corresponds better to the data. As an example, the scatterplot for the Titanic data set, reporting on the gender of the passengers and the traveling class is shown below; without jittering, the scatterplot would display only eight distinct points.

Here is an example of the **Scatter Plot** widget if the *Show class density* and *Show regression line* boxes are ticked.

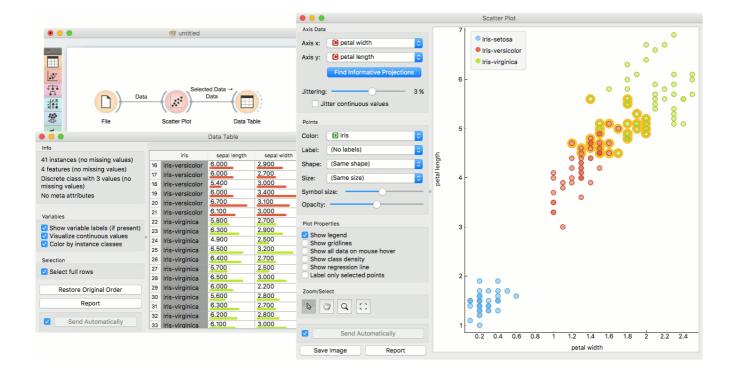
Intelligent Data Visualization

If a data set has many attributes, it is impossible to manually scan through all the pairs to find interesting or useful scatterplots. Orange implements intelligent data visualization with the **Find Informative Projections** option in the widget. The goal of optimization is to find scatterplot projections where instances are well separated.

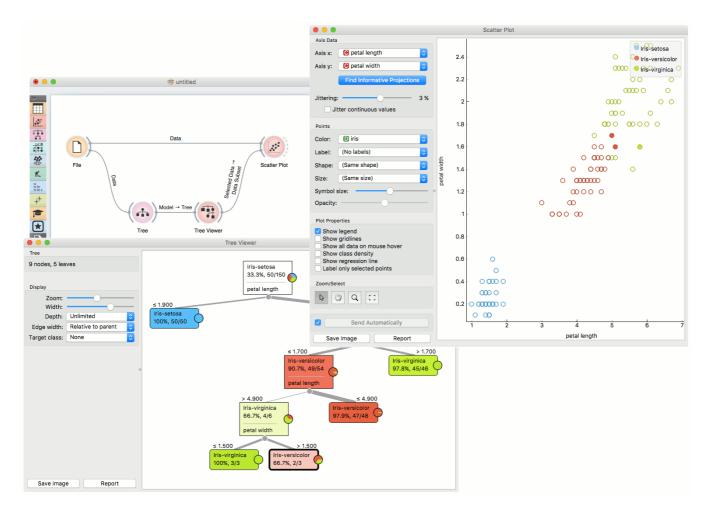
To use this method, go to the *Find Informative Projections* option in the widget, open the subwindow and press *Start Evaluation*. The feature will return a list of attribute pairs by average classification accuracy score.


Below, there is an example demonstrating the utility of ranking. The first scatterplot projection was set as the default sepal width to sepal length plot (we used the Iris data set for simplicity). Upon running *Find Informative Projections* optimization, the scatterplot converted to a much better projection of petal width to petal length plot.

Selection


Selection can be used to manually defined subgroups in the data. Use Shift modifier when selecting data instances to put them into a new group. Shift + Ctrl (or Shift + Cmd on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.


Explorative Data Analysis

The **Scatterplot**, as the rest of Orange widgets, supports zooming-in and out of part of the plot and a manual selection of data instances. These functions are available in the lower left corner of the widget. The default tool is *Select*, which selects data instances within the chosen rectangular area. *Pan* enables you to move the scatterplot around the pane. With *Zoom* you can zoom in and out of the pane with a mouse scroll, while *Reset zoom* resets the visualization to its optimal size. An example of a simple schema, where we selected data instances from a rectangular region and sent them to the <u>Data Table</u> widget, is shown below. Notice that the scatterplot doesn't show all 52 data instances, because some data instances overlap (they have the same values for both attributes used).

Example

The **Scatterplot** can be combined with any widget that outputs a list of selected data instances. In the example below, we combine **Tree** and **Scatterplot** to display instances taken from a chosen decision tree node (clicking on any node of the tree will send a set of selected data instances to the scatterplot and mark selected instances with filled symbols).

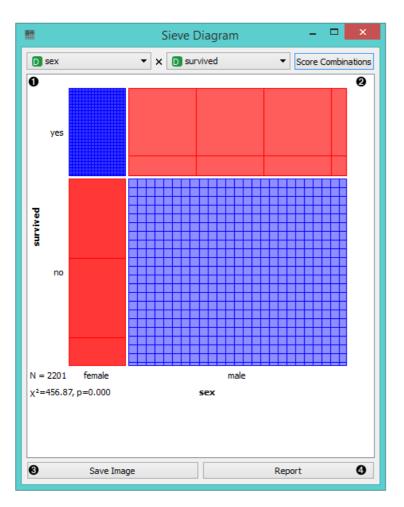
Sieve Diagram

Plots a sieve diagram for a pair of attributes.

Signals

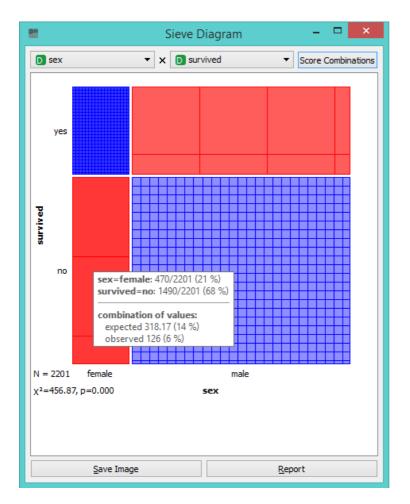
Inputs:

• Data


An input data set

Outputs:

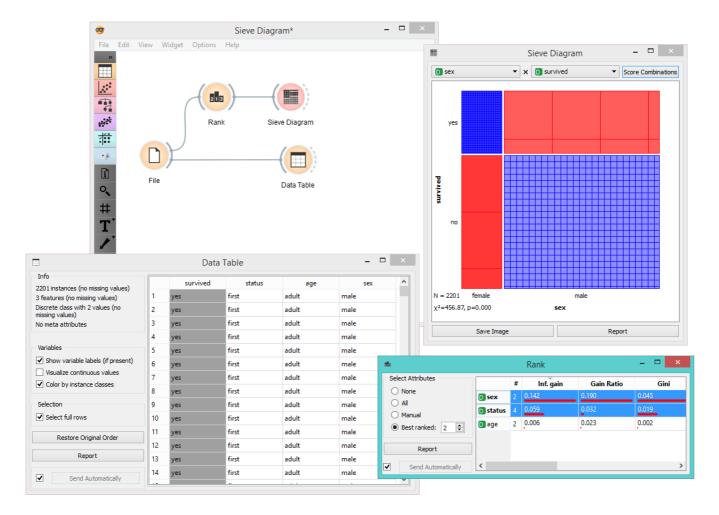
• None


Description

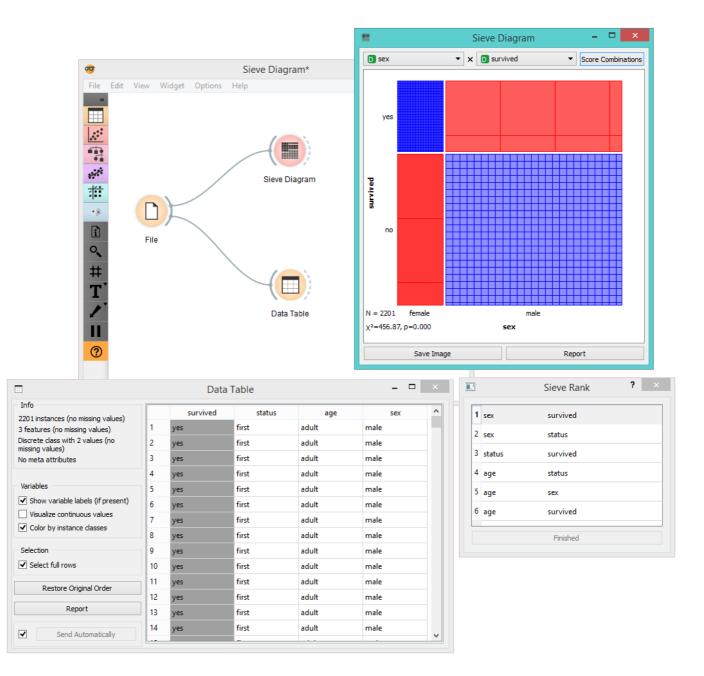
A **Sieve diagram** is a graphical method for visualizing frequencies in a two-way contingency table and comparing them to <u>expected frequencies</u> under assumption of independence. It was proposed by Riedwyl and Schüpbach in a technical report in 1983 and later called a parquet diagram (Riedwyl and Schüpbach, 1994). In this display, the area of each rectangle is proportional to the expected frequency, while the observed frequency is shown by the number of squares in each rectangle. The difference between observed and expected frequency (proportional to the standard Pearson residual) appears as the density of shading, using color to indicate whether the deviation from independence is positive (blue) or negative (red).

- 1. Select the attributes you want to display in the sieve plot.
- 2. Score combinations enables you to fin the best possible combination of attributes.
- 3. Save Image saves the created image to your computer in a .svg or .png format.
- 4. Produce a report.

The snapshot below shows a sieve diagram for the *Titanic* data set and has the attributes *sex* and *survived* (the latter is a class attribute in this data set). The plot shows that the two variables are highly associated, as there are substantial differences between observed and expected frequencies in all of the four quadrants. For example, and as highlighted in the balloon, the chance for surviving the accident was much higher for female passengers than expected (0.06 vs. 0.15).



Pairs of attributes with interesting associations have a strong shading, such as the diagram shown in the above snapshot. For contrast, a sieve diagram of the least interesting pair (age vs. survival) is shown below.



Example

Below, we see a simple schema using the *Titanic* data set, where we use the **Rank** widget to select the best attributes (the ones with the highest information gain, gain ratio or gini index) and feed them into the **Sieve Diagram**. This displays the sieve plot for the two best attributes, which in our case are sex and status. We see that the survival rate on the Titanic was very high for women of the first class and very low for female crew members.

The **Sieve Diagram** also features the *Score Combinations* option, which makes the ranking of attributes even easier.

References

Riedwyl, H., and Schüpbach, M. (1994). Parquet diagram to plot contingency tables. In Softstat '93: Advances in Statistical Software, F. Faulbaum (Ed.). New York: Gustav Fischer, 293-299.

Silhouette Plot

A graphical representation of consistency within clusters of data.

Signals

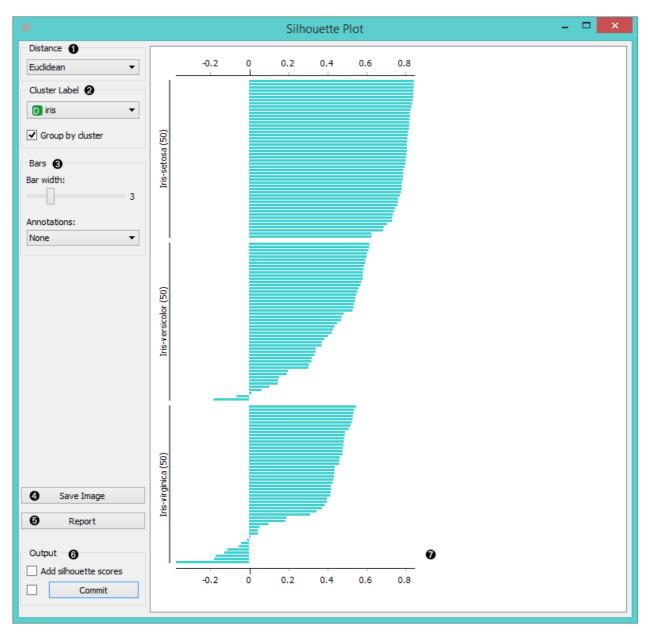
Inputs

• Data

A data set.

Outputs

Selected Data

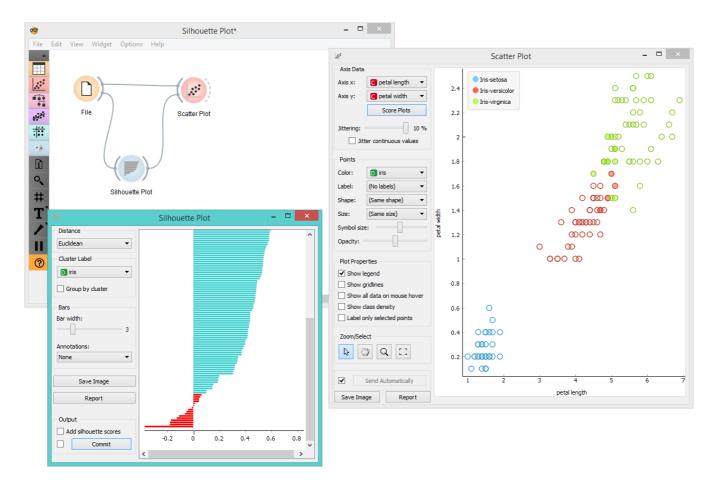

A subset of instances that the user has manually selected from the plot.

• Other Data

Remaining data.

Description

The **Silhouette Plot** widget offers a graphical representation of consistency within clusters of data and provides the user with the means to visually assess cluster quality. The silhouette score is a measure of how similar an object is to its own cluster in comparison to other clusters and is crucial in the creation of a silhoutte plot. The silhouette score close to 1 indicates that the data instance is close to the center of the cluster and instances posessing the silhouette score scores close to 0 are on the border between two clusters.



- 1. Choose the distance metric. You can choose between:
 - Euclidean ("straight line", distance between two points)
 - Manhattan (the sum of absolute differences for all attributes)
- 2. Select the cluster label. You can decide whether to group the instances by cluster or not.
- 3. Display options:
 - Choose bar width.
 - Annotations: annotate the silhouette plot.
- 4. Save Image saves the created silhouette plot to your computer in a .png or .svg format.
- 5. Produce a report.
- 6. Output:
 - Add silhouette scores (good clusters have higher silhoutte scores)
 - By clicking *Commit*, changes are comminicated to the output of the widget. Alternatively, tick the box on the left and changes will be communicated automatically.
- 7. The created silhouette plot.

Example

In the snapshot below, we have decided to use the **Silhoutte Plot** on the *iris* data set. We selected data intances with low silhouette scores and passed them on as a subset to the <u>Scatter Plot</u> widget. This visualization only confirms the

accuracy of the **Silhouette Plot** widget, as you can clearly see that the subset lies in the border between two clusters.

If you are interested in other uses of the **Silhouette Plot** widget, feel free to explore our blog post.

Tree Viewer

A visualization of classification and regression trees.

Signals

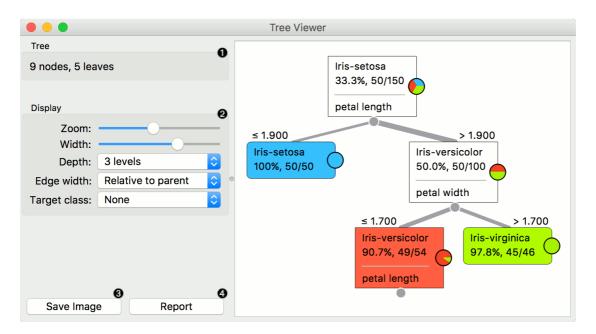
Inputs:

• Tree

A decision tree.

Outputs:

Selected Data


Data from a selected tree node.

• Data

Data set with an additional attribute for selection labels.

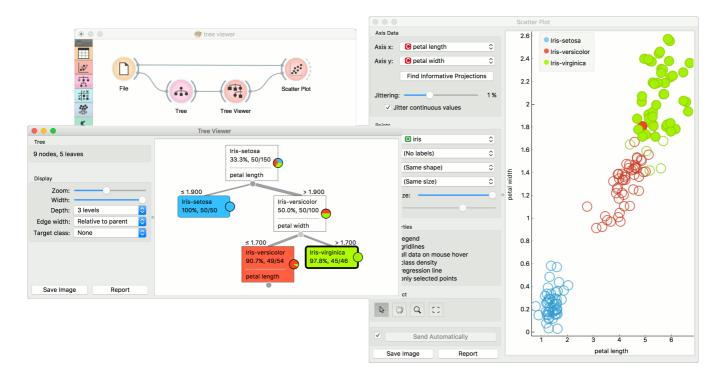
Description

This is a versatile widget with 2-D visualization of <u>classification and regression trees</u>. The user can select a node, instructing the widget to output the data associated with the node, thus enabling explorative data analysis.

- 1. Information on the input.
- 2. Display options:
 - Zoom in and zoom out
 - Select the tree width. The nodes display information bubbles when hovering over them.
 - $\circ~$ Select the depth of your tree.
 - \circ Select edge width. The edges between the nodes in the tree graph are drawn based on the selected edge width.
 - All the edges will be of equal width if *Fixed* is chosen.
 - When *Relative to root* is selected, the width of the edge will correspond to the proportion of instances

in the corresponding node with respect to all the instances in the training data. Under this selection, the edge will get thinner and thinner when traversing toward the bottom of the tree.

- *Relative to parent* makes the edge width correspond to the proportion of instances in the nodes with respect to the instances in their parent node.
- Define the target class, which you can change based on classes in the data.
- 3. Press *Save image* to save the created tree graph to your computer as a *.svg* or *.png* file.
- 4. Produce a report.


Examples

Below, is a simple classification schema, where we have read the data, constructed the decision tree and viewed it in our **Tree Viewer**. If both the viewer and <u>Tree</u> are open, any re-run of the tree induction algorithm will immediately affect the visualization. You can thus use this combination to explore how the parameters of the induction algorithm influence the structure of the resulting tree.


File Tree	© tree viewer	
Tree		Tree Viewer
Name Tree Parameters	Tree 9 nodes, 5 leaves	Iris-setosa 33.3%, 50/150
 ✓ Induce binary tree ✓ Min. number of instances in leaves: 2 ≎ ✓ Do not split subsets smaller than: 5 ≎ ✓ Limit the maximal tree depth to: 100 ≎ Classification ✓ Stop when majority reaches [%]: 95 ≎ 	Display Zoom: Width: Depth: 3 levels Edge width: Relative to parent Target class: None	petal length ≤ 1.900 Iris-setosa 100%, 50/50 Iris-versicolor 50.0%, 50/100 petal width ≤ 1.700 > 1.700 Iris-versicolor 90.7%, 49/54 97.8%, 45/46
Report Apply Automatically	Save Image Report	petal length

Clicking on any node will output the related data instances. This is explored in the schema below that shows the subset in the data table and in the <u>Scatterplot</u>. Make sure that the tree data is passed as a data subset; this can be done by connecting the **Scatterplot** to the <u>File</u> widget first, and connecting it to the **Tree Viewer** widget next. Selected data will be displayed as bold dots.

Tree Viewer can also export labelled data. Connect <u>Data Table</u> to **Tree Viewer** and set the link between widgets to *Data* instead of *Selected Data*. This will send the entire data to **Data Table** with an additional meta column labelling selected data instances (*Yes* for selected and *No* for the remaining).

Finally, **Tree Viewer** can be used also for visualizing regression trees. Connect **Random Forest** to **File** widget using *housing.tab* data set. Then connect **Pythagorean Forest** to **Random Forest**. In **Pythagorean Forest** select a regression tree you wish to further analyze and pass it to the **Tree Viewer**. The widget will display the constructed tree. For visualizing larger trees, especially for regression, **Pythagorean Tree** could be a better option.

Venn Diagram

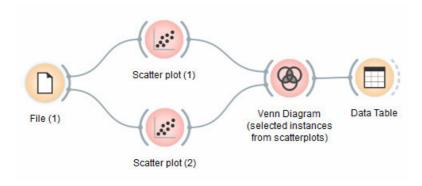
Plots a Venn diagram for two or more data subsets.

Signals

Inputs:

• Data

An input data set

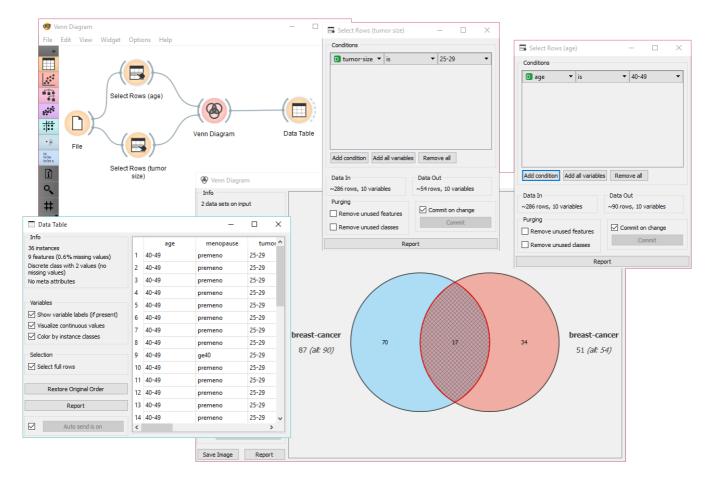

Outputs:

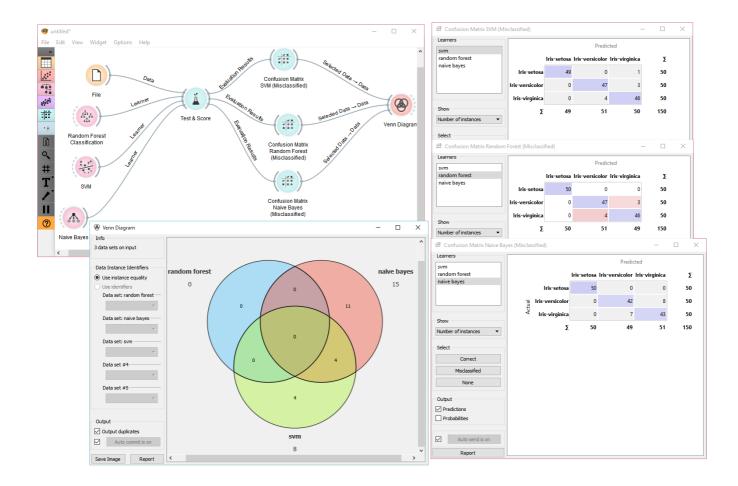
Selected Data

A subset of instances that the user has manually selected from the diagram.

Description

The **Venn Diagram** widget displays logical relations between data sets. This projection shows two or more data sets represented by circles of different colors. The intersections are subsets that belong to more than one data set. To further analyze or visualize the subset, click on the intersection.




- 1. Information on the input data.
- 2. Select the identifiers by which to compare the data.
- 3. Tick *Output duplicates* if you wish to remove duplicates.
- 4. If Auto commit is on, changes are automatically communicated to other widgets. Alternatively, click Commit.
- 5. Save Image saves the created image to your computer in a .svg or .png format.
- 6. Produce a report.

Examples

The easiest way to use the **Venn Diagram** is to select data subsets and find matching instances in the visualization. We use the *breast-cancer* data set to select two subsets with <u>Select Rows</u> widget - the first subset is that of breast cancer patients aged between 40 and 49 and the second is that of patients with a tumor size between 20 and 29. The **Venn Diagram** helps us find instances that correspond to both criteria, which can be found in the intersection of the two circles.

The **Venn Diagram** widget can be also used for exploring different prediction models. In the following example, we analysed 3 prediction methods, namely <u>Naive Bayes</u>, <u>SVM</u> and <u>Random Forest</u>, according to their misclassified instances. By selecting misclassifications in the three <u>Confusion Matrix</u> widgets and sending them to Venn diagram, we can see all the misclassification instances visualized per method used. Then we open **Venn Diagram** and select, for example, the misclassified instances that were identified by all three methods (in our case 2). This is represented as an intersection of all three circles. Click on the intersection to see this two instances marked in the <u>Scatterplot</u> widget. Try selecting different diagram sections to see how the scatterplot visualization changes.

AdaBoost

An ensemble meta-algorithm that combines weak learners and adapts to the 'hardness' of each training sample.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessing method(s)

• Learner

A learning algorithm.

Outputs:

• Learner

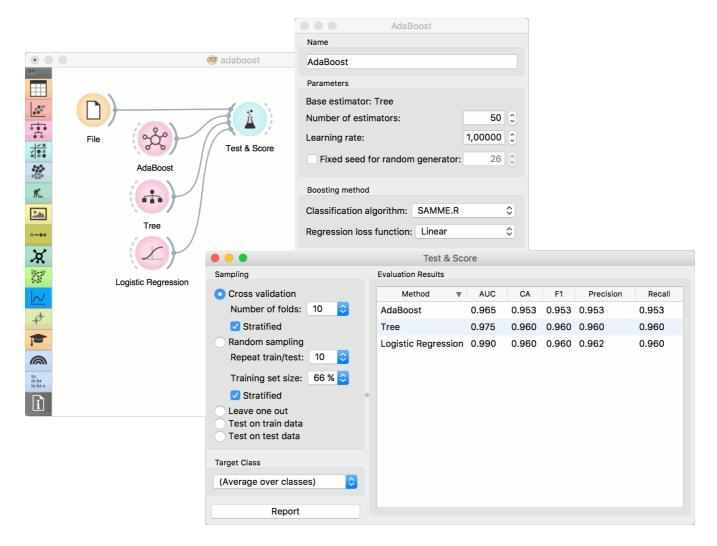
AdaBoost learning algorithm with settings as specified in the dialog.

• Model

A trained model. Output signal sent only if input Data is present.

Description

The AdaBoost (short for "Adaptive boosting") widget is a machine-learning algorithm, formulated by <u>Yoav Freund</u> and <u>Robert Schapire</u>. It can be used with other learning algorithms to boost their performance. It does so by tweaking the weak learners.


AdaBoost works for both classification and regression.

	AdaBoost	
Name		0
AdaBoost		
Parameters		0
Base estimator: Tre	e	
Number of estimate	ors:	50 🗘
Learning rate:		1,00000 🗘
Fixed seed for r	andom generator:	0
Boosting method		0
Classification algor	ithm: SAMME.R	
Regression loss fur	nction: Linear	
④ Report	Apply Autom	() atically

- 1. The learner can be given a name under which it will appear in other widgets. The default name is "AdaBoost".
- 2. Set the parameters. The base estimator is a tree and you can set:
 - Number of estimators
 - *Learning rate*: it determines to what extent the newly acquired information will override the old information
 (0 = the agent will not learn anything, 1 = the agent considers only the most recent information)
 - *Fixed seed for random generator*: set a fixed seed to enable reproducing the results.
- 3. Boosting method.
 - *Classification algorithm* (if classification on input): SAMME (updates base estimator's weights with classification results) or SAMME.R (updates base estimator's weight with probability estimates).
 - Regression loss function (if regression on input): Linear (), Square (), Exponential ().
- 4. Produce a report.
- 5. Click *Apply* after changing the settings. That will put the new learner in the output and, if the training examples are given, construct a new model and output it as well. To communicate changes automatically tick *Apply Automatically*.

Examples

For classification, we loaded the *iris* data set. We used *AdaBoost*, <u>Tree</u> and <u>Logistic Regression</u> and evaluated the models' performance in <u>Test & Score</u>.

For regression, we loaded the *housing* data set, sent the data instances to two different models (**AdaBoost** and <u>Tree</u>) and output them to the <u>Predictions</u> widget.

						AdaBoost				
					Name					
					AdaBoost					
•	@	adaboo	st		Adaboost					
22					Parameters					
					Base estimator: Tree					
					Number of estimators: 50 🗘					
					Learning rate: 1,00000 🗘					
***	File		Predict							
					Fixed seed for random generator: 26 🗘					
**	AdaBoost	/								
					Boosting method					
		γ			Classification alg	orithm: SAM	ME.R 🗘			
244					Regression loss function: Linear					
0-00	Tree									
				Pr	edictions					
×	Info		AdaBoost	Tree	MEDV	CRIM	ZN	INDUS		
87	Data: 506 instances.	1	24.000	26.350	24.000	0.006	18.000	2.310		
	Predictors: 2	2	24.000	20.330	24.000	0.000	0.000	7.070		
	Task: Regression	2	34.700	34.800	34.700	0.027	0.000	7.070		
Þ	Restore Original Order	4	33.400	33.200	33.400	0.027	0.000	2.180		
1		5	36.100	37.150	36.200	0.069	0.000	2.180		
<u></u>	Data View	6	28.700	28.900	28.700	0.030	0.000	2.180		
	Show full data set	7	22.600	22.300	22.900	0.088	12.500	7.870		
to be to be a	Output	8	27.100	22.100	27.100	0.145	12.500	7.870		
ि	Original data	9	16.500	15.475	16.500	0.211	12.500	7.870		
	 Predictions 	10	18.900	18.350	18.900	0.170	12.500	7.870		
	 Probabilities 	10	15.000	15.475	15.000	0.225	12.500	7.870		
		12	18.900	19.167	18.900	0.117	12.500	7.870		
	Report	13	21.700	22.425	21.700	0.094	12.500	7.870		
		-								

CN2 Rule Induction

Induce rules from data using CN2 algorithm.

Signals

Inputs

• Data

Data set.

• Preprocessor

Preprocessing method(s)

Outputs

• Learner

The CN2 learning algorithm with settings as specified in the dialog.

CN2 Rule Classifier

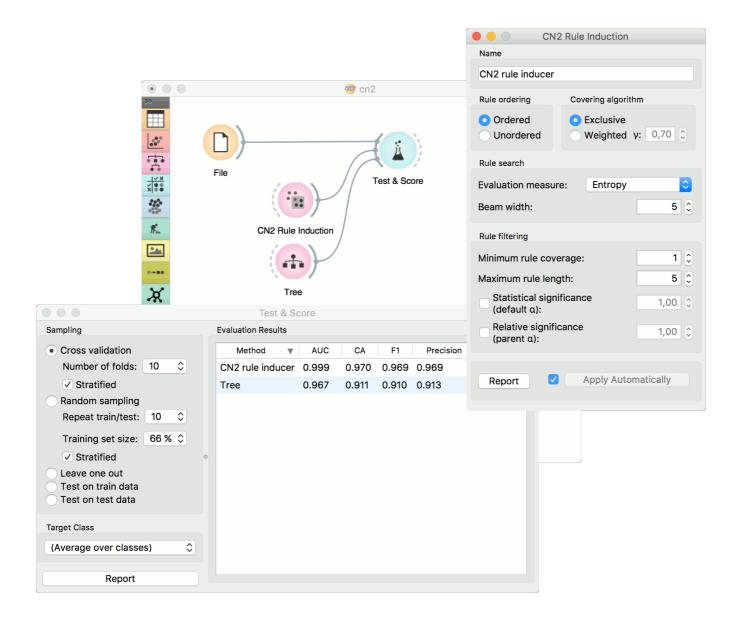
A trained model. Output signal sent only if input Data is present.

Description

The CN2 algorithm is a classification technique designed for the efficient induction of simple, comprehensible rules of form "if *cond* then predict *class*", even in domains where noise may be present.

CN2 Rule Induction works only for classification.

• • •	CN2 Rule	Induction			
Name					0
CN2 rule indu	cer				
Rule ordering	2 Co	vering algori	thm		0
 Ordered Unordered 	0	Exclusive Weighted	γ:	0,70	0
Rule search					0
Evaluation me	asure:	Entropy			0
Beam width:				5	٢
Rule filtering					6
Minimum rule	coverage	:		1	٥
Maximum rule	length:			5	0
Statistical s (default α):	•	се		1,00	٢
Relative sig (parent α):	gnificance	•		1,00	0
G Report		Apply Auto	omat	tically	0


- 1. Name under which the learner appears in other widgets. The default name is *CN2 Rule Induction*.
- 2. Rule ordering:
 - **Ordered**: induce ordered rules (decision list). Rule conditions are found and the majority class is assigned in the rule head.
 - **Unordered**: induce unordered rules (rule set). Learn rules for each class individually, in regard to the original learning data.
- 3. Covering algorithm:
 - **Exclusive**: after covering a learning instance, remove it from further consideration.
 - **Weighted**: after covering a learning instance, decrease its weight (multiplication by *gamma*) and in-turn decrease its impact on further iterations of the algorithm.
- 4. *Rule search*:
 - Evaluation measure: select a heuristic to evaluate found hypotheses:
 - a. Entropy (measure of unpredictability of content)
 - b. Laplace Accuracy
 - c. Weighted Relative Accuracy
 - Beam width; remember the best rule found thus far and monitor a fixed number of alternatives (the beam).
- 5. Rule filtering:
 - **Minimum rule coverage**: found rules must cover at least the minimum required number of covered examples. Unordered rules must cover this many target class examples.
 - **Maximum rule length**: found rules may combine at most the maximum allowed number of selectors (conditions).
 - **Default alpha**: significance testing to prune out most specialised (less frequently applicable) rules in regard to the initial distribution of classes.
 - **Parent alpha**: significance testing to prune out most specialised (less frequently applicable) rules in regard to the parent class distribution.
- 6. Tick 'Apply Automatically' to auto-communicate changes to other widgets and to immediately train the classifier if learning data is connected. Alternatively, press 'Apply' after configuration.

Examples

For the example below, we have used *zoo* data set and passed it to **CN2 Rule Induction**. We can review and interpret the built model with **CN2 Rule Viewer** widget.

File	CN2	Rule Induction	_	N2 Rule Viewer						
	ule Induction			• •			CN2 Rule Vie			
Name				IF conditions		THEN class	Distribution	Probabilities [%]	Quality	Length
			0	feathers≠0	→	type=bird	[0, 20, 0, 0,	4:78:4:4:4:4:4	-0.00	1
CN2 rule inducer			1	milk≠0	→	type=mammal	<u>[0, 0, 0, 0, 0,</u>	2:2:2:2:2:88:2	-0.00	1
Rule ordering (Covering algorithm		2	hair≠0	→	type=insect	[0, 0, 0, 4, 0,	9:9:9:45:9:9:9	-0.00	1
			3	airborne≠0	→	type=insect	[0, 0, 0, 2, 0,	11 : 11 : 11 : 33 : 11 : 11 : 11	-0.00	1
-	• Exclusive	0.70	4	fins≠0	→	type=fish	[0, 0, 13, 0,	5:5:70:5:5:5:5	-0.00	
Unordered	Weighted y:	0,70	5	legs=5	→	type=invertebrate	[0, 0, 0, 0, 1,		-0.00	
Rule search			6	legs=8	→	type=invertebrate	[0, 0, 0, 0, 2,	11 : 11 : 11 : 11 : 33 : 11 : 11	-0.00	1
			7	eggs=0	→	type=reptile		12 : 12 : 12 : 12 : 12 : 12 : 25	-0.00	1
Evaluation measure:	Entropy	2	8	breathes=0	→	type=invertebrate	[0, 0, 0, 0, 5,	8:8:8:50:8:8	-0.00	1
Beam width:		5 🗘	9	aquatic≠0	→	type=amphibian	[4, 0, 0, 0, 0,	45:9:9:9:9:9:9	-0.00	1
			-	predator≠0	→	type=reptile		10 : 10 : 10 : 10 : 10 : 10 : 40	-0.00	1
Rule filtering			11	backbone≠0	<i>→</i>	type=reptile	[0, 0, 0, 0, 0,		-0.00	1
		1	_	legs=0	→	type=invertebrate	[0, 0, 0, 0, 2,	11 : 11 : 11 : 11 : 33 : 11 : 11	-0.00	1
Minimum rule coverag	je:	1 🗘	13	TRUE	→	type=insect	[0, 0, 0, 2, 0,	11 : 11 : 11 : 33 : 11 : 11 : 11	-0.00	C
Maximum rule length:		5 🗘		Restore original o	order	Compact view	V		Repo	rt
 Statistical signification (default α): 	ance	1,00 🗘								
 Relative significan (parent α): 	се	1,00 🗘								

The second workflow tests evaluates CN2 Rule Induction and Tree in Test & Score.

References

- 1. "Separate-and-Conquer Rule Learning", Johannes Fürnkranz, Artificial Intelligence Review 13, 3-54, 1999
- "The CN2 Induction Algorithm", Peter Clark and Tim Niblett, Machine Learning Journal, 3 (4), pp261-283, (1989)
- 3. "Rule Induction with CN2: Some Recent Improvements", Peter Clark and Robin Boswell, Machine Learning -Proceedings of the 5th European Conference (EWSL-91), pp151-163, 1991
- "Subgroup Discovery with CN2-SD", Nada Lavrač et al., Journal of Machine Learning Research 5 (2004), 153-188, 2004

Constant

Predict the most frequent class or mean value from the training set.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A majority/mean learning algorithm

• Model

A trained model. Output signal sent only if input Data is present.

Description

This learner produces a model that always predicts the <u>majority</u> for classification tasks and <u>mean value</u> for regression tasks.

For classification, when predicting the class value with <u>Predictions</u>, the widget will return relative frequencies of the classes in the training set. When there are two or more majority classes, the classifier chooses the predicted class randomly, but always returns the same class for a particular example.

For regression, it *learns* the mean of the class variable and returns a predictor with the same mean value.

The widget is typically used as a baseline for other models.

	Constant	
Name		0
Constant		
0		0
Report	Apply Automatically	

This widget provides the user with two options:

- 1. The name under which it will appear in other widgets. Default name is "Constant".
- 2. Produce a report.

If you change the widget's name, you need to click *Apply*. Alternatively, tick the box on the left side and changes will be communicated automatically.

Examples

In a typical classification example, we would use this widget to compare the scores of other learning algorithms (such as kNN) with the default scores. Use *iris* data set and connect it to <u>Test & Score</u>. Then connect **Constant** and <u>kNN</u> to <u>Test & Score</u> and observe how well <u>kNN</u> performs against a constant baseline.

	Constant	Test & Score	
			Test & Score
₩ <u></u>		Sampling	Evaluation Results
		Cross validation	Method V AUC CA F1 Precision Recall
000	kNN	Number of folds: 10 🗘	Constant 0.500 0.333 0.167 0.111 0.333
Constant		Stratified	kNN 0.989 0.973 0.973 0.974 0.973
Name		Random sampling	
Constant		Repeat train/test: 10 🗘	
		Training set size: 66 % 🗘	
Report 🗸 Apply A	Automatically	✓ Stratified	•
		Leave one out	
		Test on train data	
		Test on test data	
to be a		Target Class	
i		(Average over classes)	
		Report	

For regression, we use **Constant** to construct a predictor in <u>Predictions</u>. We used the *housing* data set. In **Predictions**, you can see that *Mean Learner* returns one (mean) value for all instances.

		edictions					
- 20	Constant			Predictions			
18°	Info		Constant	MEDV	CRIM	ZN	INDUS
		6 instances. 1	22.533	24.000	0.006	18.000	2.310
	Predictor Task: Re	2	22.533	21.600	0.027	0.000	7.070
0		re Original Order	22.533	34.700	0.027	0.000	7.070
Constant	Restor	e Original Order 4	22.533	33.400	0.032	0.000	2.180
ame	Data View	, 5	22.533	36.200	0.069	0.000	2.180
	Z Show	full data set	22.533	28.700	0.030	0.000	2.180
onstant	• Show	7	22.533	22.900	0.088	12.500	7.870
	Output	8	22.533	27.100	0.145	12.500	7.870
Report 🛛 Apply Automatic	ally Vrigin	al data 9	22.533	16.500	0.211	12.500	7.870
	✓ Predic	ctions 10	22.533	18.900	0.170	12.500	7.870
	✓ Proba	bilities 11	22.533	15.000	0.225	12.500	7.870
50 to be to be a		12	22.533	18.900	0.117	12.500	7.870
		Report 12	22.533	21.700	0.094	12.500	7.870

kNN

Predict according to the nearest training instances.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A kNN learning algorithm with settings as specified in the dialog.

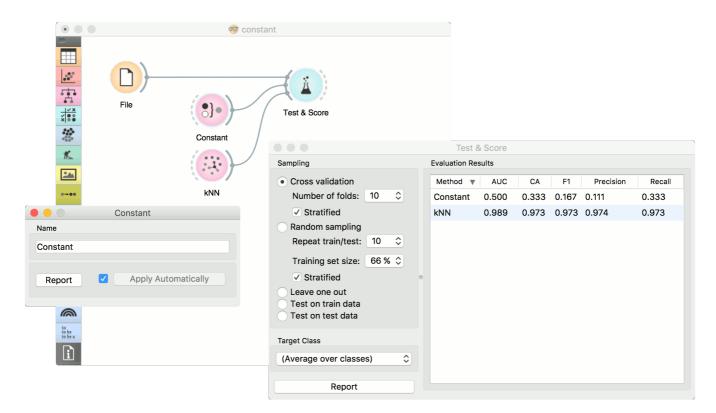
• Model

A trained model. Output signal sent only if input Data is present.

Description

The **kNN** widget uses the <u>kNN algorithm</u> that searches for k closest training examples in feature space and uses their average as prediction.

• • • k	NN
Name	0
kNN	
Neighbors	0
Number of neighbors:	5 🗘
Metric:	Euclidean ᅌ
Weight:	Uniform ᅌ
0	0
Report 🗹	Apply Automatically


- 1. A name under which it will appear in other widgets. The default name is "kNN".
- 2. Set the number of nearest neighbors, the distance parameter (metric) and weights as model criteria. Metric can be:
 - Euclidean ("straight line", distance between two points)
 - Manhattan (sum of absolute differences of all attributes)
 - Maximal (greatest of absolute differences between attributes)
 - Mahalanobis (distance between point and distribution).

The Weights you can use are:

- **Uniform**: all points in each neighborhood are weighted equally.
- **Distance**: closer neighbors of a query point have a greater influence than the neighbors further away.
- 3. Produce a report.
- 4. When you change one or more settings, you need to click *Apply*, which will put a new learner on the output and, if the training examples are given, construct a new model and output it as well. Changes can also be applied automatically by clicking the box on the left side of the *Apply* button.

Examples

The first example is a classification task on *iris* data set. We compare the results of <u>k-Nearest neighbors</u> with the default model Constant, which always predicts the majority class.

The second example is a regression task. This workflow shows how to use the *Learner* output. For the purpose of this example, we used the *housing* data set. We input the **kNN** prediction model into <u>Predictions</u> and observe the predicted values.

						kNN					
					Name						
		🤓 ki	nn		kNN						
					Neighbors						
					Number of neig	ghbors:		5 🗘			
<u>×</u>					Metric:	E	uclidean	\$			
•	File		Predic	ctions	Weight:		Jniform	\$			
					rroignt.	C		~			
8	kNN	1									
2					Report		oly Automatic	cally			
				Predictio	ns						
••											
	Info		kNN	MEDV	CRIM	7N	INDUS	СНИ			
к.		1	kNN 21.780	MEDV	CRIM	ZN	INDUS				
	Data: 506 instances. Predictors: 1	1	21.780	24.000	0.006	18.000	2.310	0.000			
え	Data: 506 instances. Predictors: 1 Task: Regression	2	21.780 22.900	24.000 21.600	0.006 0.027	18.000 0.000	2.310 7.070	0.000			
₹	Data: 506 instances. Predictors: 1	2 3	21.780 22.900 25.360	24.000 21.600 34.700	0.006 0.027 0.027	18.000 0.000 0.000	2.310 7.070 7.070	0.000 0.000 0.000			
2 2	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order	2	21.780 22.900 25.360 26.060	24.000 21.600 34.700 33.400	0.006 0.027 0.027 0.032	18.000 0.000 0.000 0.000	2.310 7.070 7.070 2.180	0.000 0.000 0.000 0.000			
\$ }	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View	2 3 4	21.780 22.900 25.360	24.000 21.600 34.700	0.006 0.027 0.027	18.000 0.000 0.000	2.310 7.070 7.070 2.180 2.180	0.000 0.000 0.000			
₹ <u>√</u> +	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order	2 3 4 5	21.780 22.900 25.360 26.060 27.100 27.100	24.000 21.600 34.700 33.400 36.200 28.700	0.006 0.027 0.027 0.032 0.069	18.000 0.000 0.000 0.000 0.000	2.310 7.070 7.070 2.180	0.000 0.000 0.000 0.000 0.000			
₹ <u>√</u> +	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View	2 3 4 5 6	21.780 22.900 25.360 26.060 27.100 27.100 20.880	24.000 21.600 34.700 33.400 36.200 28.700 22.900	0.006 0.027 0.027 0.032 0.069 0.030	18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.310 7.070 7.070 2.180 2.180 2.180	0.000 0.000 0.000 0.000 0.000 0.000			
	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View Show full data set Output	2 3 4 5 6 7	21.780 22.900 25.360 26.060 27.100 27.100	24.000 21.600 34.700 33.400 36.200 28.700	0.006 0.027 0.027 0.032 0.069 0.030 0.088	18.000 0.000 0.000 0.000 0.000 0.000 0.000 12.500	2.310 7.070 7.070 2.180 2.180 2.180 2.180 7.870	0.000 0.000 0.000 0.000 0.000 0.000 0.000			
	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View Show full data set	2 3 4 5 6 7 8	21.780 22.900 25.360 26.060 27.100 27.100 20.880 19.100	24.000 21.600 34.700 33.400 36.200 28.700 22.900 27.100	0.006 0.027 0.027 0.032 0.069 0.030 0.088 0.145	18.000 0.000 0.000 0.000 0.000 0.000 12.500	2.310 7.070 7.070 2.180 2.180 2.180 7.870 7.870	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View Show full data set Output Original data	2 3 4 5 6 7 8 9	21.780 22.900 25.360 26.060 27.100 27.100 20.880 19.100 18.400	24.000 21.600 34.700 33.400 36.200 28.700 22.900 27.100 16.500	0.006 0.027 0.027 0.032 0.069 0.030 0.088 0.145 0.211	18.000 0.000 0.000 0.000 0.000 0.000 12.500 12.500	2.310 7.070 7.070 2.180 2.180 2.180 7.870 7.870 7.870	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			
	Data: 506 instances. Predictors: 1 Task: Regression Restore Original Order Data View Show full data set Output Original data Predictions	2 3 4 5 6 7 8 9 10	21.780 22.900 25.360 26.060 27.100 27.100 20.880 19.100 18.400 19.480	24.000 21.600 34.700 33.400 36.200 28.700 22.900 27.100 16.500 18.900	0.006 0.027 0.027 0.032 0.069 0.030 0.088 0.145 0.211 0.170	18.000 0.000 0.000 0.000 0.000 12.500 12.500 12.500 12.500	2.310 7.070 2.180 2.180 2.180 2.180 7.870 7.870 7.870 7.870 7.870	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			

Linear Regression

A linear regression algorithm with optional L1 (LASSO), L2 (ridge) or L1L2 (elastic net) regularization.

Signals

Inputs:

• Data

A data set

• Preprocessor

A preprocessed data set.

Outputs:

• Learner

A linear regression learning algorithm with settings as specified in the dialog.

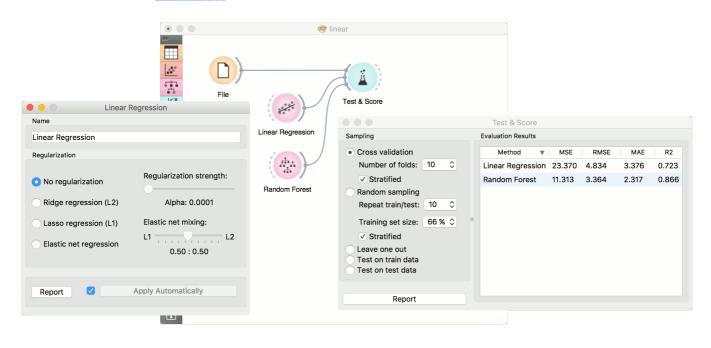
• Predictor

A trained regressor. Output signal sent only if input Data is present.

Description

The **Linear Regression** widget constructs a learner/predictor that learns a <u>linear function</u> from its input data. The model can identify the relationship between a predictor xi and the response variable y. Additionally, <u>Lasso</u> and <u>Ridge</u> regularization parameters can be specified. Lasso regression minimizes a penalized version of the least squares loss function with L1-norm penalty and Ridge regularization with L2-norm penalty.

Linear regreesion works only on regression tasks.


🕒 🕘 📃 Line	ar Regression
Name	
Linear Regression	
Regularization	
• No regularization	Regularization strength:
Ridge regression (L2)	Alpha: 0.0001
Lasso regression (L1)	Elastic net mixing:
Elastic net regression	L1 L2 0.50 : 0.50
0	
Report 🗹	Apply Automatically

- 1. The learner/predictor name
- 2. Choose a model to train:

- no regularization
- a Ridge regularization (L2-norm penalty)
- a Lasso bound (L1-norm penalty)
- an Elastic net regularization
- 3. Produce a report.
- 4. Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Example

Below, is a simple workflow with *housing* data set. We trained **Linear Regression** and <u>Random Forest</u> and evaluated their performance in Test&Score.

Load Model

Load a model from an input file.

Signals

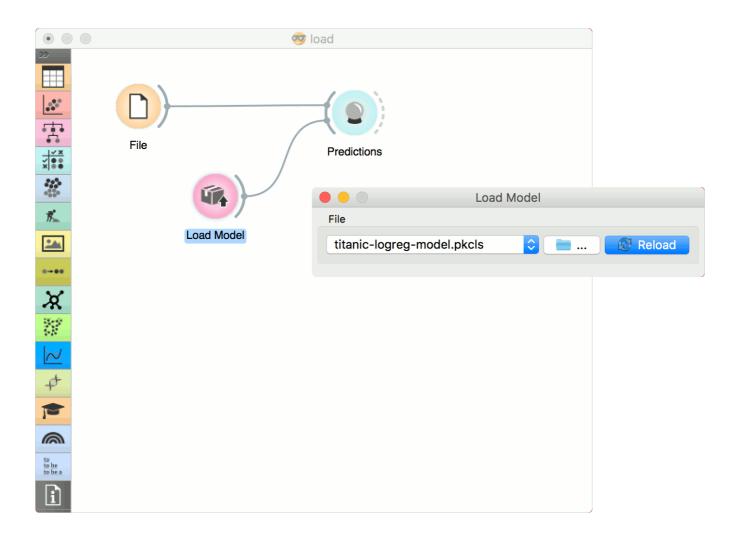
Inputs:

• None

Outputs:

• Model

A model with selected parameters.


Description

- 1. Choose from a list of previously used models.
- 2. Browse for saved models.
- 3. Reload the selected model.

Example

When you want to use a custom-set model that you've saved before, open the **Load Model** widget and select the desired file with the *Browse* icon. This widget loads the exisiting model into <u>Predictions</u> widget. Data sets used with **Load Model** have to contain compatible attributes!

Logistic Regression

The logistic regression classification algorithm with LASSO (L1) or ridge (L2) regularization.

Signals

Inputs:

• Data

A data set

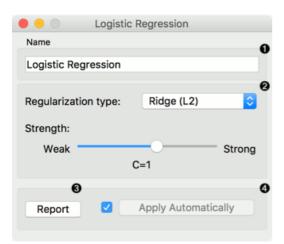
• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A logistic regression learning algorithm with settings as specified in the dialog.


Logistic Regression Classifier

A trained classifier. Output signal sent only if input Data is present.

Description

Logistic Regression learns a Logistic Regression model from the data.

It only works for classification tasks.

- 1. A name under which the learner appears in other widgets. The default name is "Logistic Regression".
- 2. <u>Regularization</u> type (either <u>L1</u> or <u>L2</u>). Set the cost strength (default is C=1).
- 3. Press Apply to commit changes. If Apply Automatically is ticked, changes will be communicated automatically.

Example

The widget is used just as any other widget for inducing a classifier. This is an example demonstrating prediction results with logistic regression on the *hayes-roth* data set. We first load *hayes-roth_learn* in the File widget and pass

the data to Logistic Regression. Then we pass the trained model to Predictions.

Now we want to predict class value on a new data set. We load *hayes-roth_test* in the second **File** widget and connect it to **Predictions**. We can now observe class values predicted with **Logistic Regression** directly in **Predictions**.

Train data Logistic Reg	ession Predictions				Predictions				
K D	Info		Logistic Regression		У	hobby	age	education	marital
	Data: 28 instances.	1	0.77 : 0.17 : 0.06 → 1	1		1	1	1	2
Test data	Predictors: 1	2	0.77 : 0.17 : 0.06 → 1	1		1	1	2	1
Logistic Regression	Task: Classification	3	0.77 : 0.17 : 0.06 → 1	1		1	2	1	1
	Restore Original Order	4	0.88 : 0.04 : 0.08 → 1	1		1	1	1	3
Name	Show	5	0.88 : 0.04 : 0.08 → 1	1		1	1	3	1
Logistic Regression	Predicted class	6	0.88 : 0.04 : 0.08 → 1	1		1	3	1	1
	 Predicted probabilities for: 	7	0.73 : 0.15 : 0.12 → 1	1		1	1	3	3
Regularization type: Ridge (L2)	1	8	<u>0.73 : 0.15 : 0.12 → 1</u>	1		1	3	1	3
Strength:	2	9	0.73 : 0.15 : 0.12 → 1	1		1	3	3	1
	3	10	<u>0.17 : 0.77 : 0.06 → 2</u>	2		1	2	2	1
Weak C=1		• 11	<u>0.17</u> : 0.77 : 0.06 → 2	2		1	2	1	2
C=1		12	<u>0.17 : 0.77 : 0.06 → 2</u>	2		1	1	2	2
	Draw distribution bars	13	<u>0.04 : 0.88 : 0.08 → 2</u>	2		1	2	2	3
Report Apply Automatically	Data View	14	<u>0.04 : 0.88 : 0.08 → 2</u>	2		1	2	3	2
	✓ Show full data set		<u>0.04 : 0.88 : 0.08 → 2</u>	2		1	3	2	2
	Show full data set	16	<u>0.15 : 0.73 : 0.12 → 2</u>	2		1	2	3	3
	Output	17		2		1	3	2	3
	Original data	18		2		1	3	3	2
	Predictions		<u>0.46 : 0.46 : 0.09 → 1</u>	1		1	1	3	2
	Probabilities		$0 0.46: 0.46: 0.09 \rightarrow 2$	2		1	3	2	1
			<u>0.46 : 0.46 : 0.09 → 1</u>	1		1	2	1	3
	Report	22	$2 0.46: 0.46: 0.09 \rightarrow 2$	2		1	2	3	1

Naive Bayes

A fast and simple probabilistic classifier based on Bayes' theorem with the assumption of feature independence.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A naive bayes learning algorithm with settings as specified in the dialog.

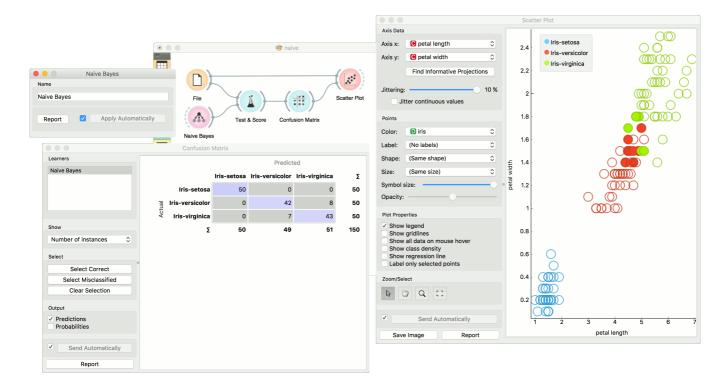
• Model

A trained classifier. Output signal sent only if input *Data* is present.

Description

Naive Bayes learns a Naive Bayesian model from the data.

It only works for classification tasks.


This widget has two options: the name under which it will appear in other widgets and producing a report. The default name is *Naive Bayes*. When you change it, you need to press *Apply*.

Examples

Here, we present two uses of this widget. First, we compare the results of the **Naive Bayes** with another model, the <u>Random Forest</u>. We connect *iris* data from <u>File</u> to <u>Test&Score</u>. We also connect **Naive Bayes** and <u>Random Forest</u> to **Test & Score** and observe their prediction scores.

		🤓 naive								
	File	Test & Score	Name Naive Bayes	1	Naive Bayes					
	Naive Bayes		Report		Apply Auto	omatically				
₫										
					Test & Sco	re				
0	Random Forest	Sampling			Evaluation Resul	ts				
X		Cross validation	tion		Method	AUC	CA	F1	Precision	
*		Number of f	folds: 10 🗘		Naive Bayes	0.983	0.900	0.900	0.900	
244 1		Stratified			Random Fores	st 0.997	0.960	0.960	0.960	
<u>~~</u>		Random sam	npling							
►		Repeat train	n/test: 10 ≎							
P		Training set	size: 66 % 🗘							
<u></u>		Stratified	i	•						
to be to be a		Leave one of Test on train								
the second se		Test on test								
i										
		Target Class								
		(Average over	classes) 🗘							
			_							
		Re	eport							

The second schema shows the quality of predictions made with **Naive Bayes**. We feed the <u>Test&Score</u> widget a Naive Bayes learner and then send the data to the <u>Confusion Matrix</u>. We also connect <u>Scatterplot</u> with **File**. Then we select the misclassified instances in the **Confusion Matrix** and show feed them to <u>Scatterplot</u>. The bold dots in the scatterplot are the misclassified instances from **Naive Bayes**.

Neural Network

?

A multi-layer perceptron (MLP) algorithm with backpropagation.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A MLP learning algorithm with settings as specified in the dialog.

• Model

A trained model. Output signal sent only if input Data is present.

Description

The **Neural Network** widget uses sklearn's <u>Multi-layer Perceptron algorithm</u> that can learn non-linear models as well as linear.

	Neural I	Network		
Name				0
Neural Netwo	ork			
Network				0
Neurons per l	nidden laye	er: 100,		
Activation:		ReLu		\$
Solver:		Adam		\$
Alpha:			0.00010	
Max iterations	5:		200	0
0				0
Report		Apply Auton	natically	

1. A name under which it will appear in other widgets. The default name is "Neural Network".

- 2. Set model parameters: Neurons per hidden layer: defined as the ith element represents the number of neurons in the ith hidden layer. E.g. a neural network with 3 layers can be defined as 2, 3, 2. Activation function for the hidden layer:
 - Identity: no-op activation, useful to implement linear bottleneck
 - $\circ~$ Logistic: the logistic sigmoid function
 - $\circ~$ tanh: the hyperbolic tan function
 - $\circ~$ ReLu: the rectified linear unit function
 - Solver for weight optimization: L-BFGS-B: an optimizer in the family of quasi-Newton methods SGD: stochastic gradient descent - Adam: stochastic gradient-based optimizer
 - Alpha: L2 penalty (regularization term) parameter
 - $\circ~$ Max iterations: maximum number of iterations

Other parameters are set to sklearn's defaults.

- 3. Produce a report.
- 4. When the box is ticked (*Apply Automatically*), the widget will communicate changes automatically. Alternatively, click *Apply*.

Examples

The first example is a classification task on *iris* data set. We compare the results of **Neural Network** with the Logistic Regression.

				Test & Score	9				
		Sampling	Evaluation Results						
		Cross validation	Method	AUC	CA	F1	Precision	Recall	
₿ <u>`</u>		Number of folds: 10 🗘	Neural Network	0.992	0.947		0.904	0.940	
	Test & Score	✓ Stratified	Logistic Regress	ion 0.984	0.960	0.938	0.978	0.900	
	Neural Network	Cross validation by feature							
×		Random sampling							
	XY	Repeat train/test: 10 \$							
		Training set size: 66 % 🗘							
	Logistic Regression	✓ Stratified							
Neural Network		Leave one out							
me		Test on train data							
eural Network		 Test on test data 							
etwork		Target Class							
eurons per hidden layer: 100,		(Average over classes)							
ctivation: ReLu	\$	-							
olver: Adam	\$	Report							
pha:	0.00010 0								
ax iterations:	200 0								
Report Apply Auto	matically								

The second example is a prediction task, still using the *iris* data. This workflow shows how to use the *Learner* output. We input the **Neural Network** prediction model into **Predictions** and observe the predicted values.

	Predictions			Predictions				
	Info		Neural Network	iris	sepal length	sepal width	petal length	petal width
●→●● Neural Network	Data: 150 instances.	56	0.03 : 0.83 : 0.14 → Iris-versi	Iris-versicolor	5.700	2.800	4.500	1.300
X	Predictors: 1	57	0.06 : 0.62 : 0.32 → Iris-versi	Iris-versicolor	6.300	3.300	4.700	1.600
	Task: Classification	58	0.07 : 0.91 : 0.02 → Iris-versi	Iris-versicolor	4.900	2.400	3.300	1.000
Neural Network	Restore Original Order	59	0.01 : 0.87 : 0.12 → Iris-versi	Iris-versicolor	6.600	2.900	4.600	1.300
Name	Show	60	0.06 : 0.83 : 0.11 → Iris-versi	Iris-versicolor	5.200	2.700	3.900	1.400
Neural Network	Predicted class	61	0.01 : 0.98 : 0.01 → Iris-versi	Iris-versicolor	5.000	2.000	3.500	1.000
Network	 Predicted class Predicted probabilities for: 	62	0.05 : 0.77 : 0.18 → Iris-versi	Iris-versicolor	5.900	3.000	4.200	1.500
		63	0.00 : 0.98 : 0.02 → Iris-versi	Iris-versicolor	6.000	2.200	4.000	1.000
Neurons per hidden layer: 100,	Iris-setosa Iris-versicolor	64	0.02 : 0.74 : 0.24 → Iris-versi	Iris-versicolor	6.100	2.900	4.700	1.400
Activation: ReLu	Iris-virginica	65	0.11 : 0.82 : 0.07 → Iris-versi	Iris-versicolor	5.600	2.900	3.600	1.300
Solver: Adam 🗘		66	0.02 : 0.85 : 0.13 → Iris-versi	Iris-versicolor	6.700	3.100	4.400	1.400
Alpha: 0.00010 0		67	0.06 : 0.70 : 0.24 → Iris-versi	Iris-versicolor	5.600	3.000	4.500	1.500
	Draw distribution bars	68	0.03 : 0.94 : 0.03 → Iris-versi	Iris-versicolor	5.800	2.700	4.100	1.000
Max iterations: 200 🗘		69	0.00 : 0.72 : 0.27 → Iris-versi	Iris-versicolor	6.200	2.200	4.500	1.500
	Data View	70	0.02 : 0.95 : 0.03 → Iris-versi	Iris-versicolor	5.600	2.500	3.900	1.100
Report Apply Automatically	✓ Show full data set	71	0.04 : 0.38 : 0.58 → Iris-virgi	Iris-versicolor	5.900	3.200	4.800	1.800
	Output	72	0.02 : 0.91 : 0.07 → Iris-versi	Iris-versicolor	6.100	2.800	4.000	1.300
	✓ Original data	73	0.00 : 0.59 : 0.41 → Iris-versi	Iris-versicolor	6.300	2.500	4.900	1.500
	 Predictions 	74	0.01 : 0.88 : 0.11 → Iris-versic	Iris-versicolor	6.100	2.800	4.700	1.200
	✓ Probabilities	75	0.02 : 0.89 : 0.09 → Iris-versi	Iris-versicolor	6.400	2.900	4.300	1.300
		76	0.02 : 0.84 : 0.14 → Iris-versi	Iris-versicolor	6.600	3.000	4.400	1.400
	Report	77	0.00 : 0.76 : 0.23 → Iris-versi	Iris-versicolor	6.800	2.800	4.800	1.400

Random Forest

Predict using an ensemble of decision trees.

Signals

Inputs:

• Data

A data set

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A random forest learning algorithm with settings as specified in the dialog.

• Model

A trained model. Output signal sent only if input Data is present.

Description

Random forest is an ensemble learning method used for classification, regression and other tasks. It was first proposed by Tin Kam Ho and further developed by Leo Breiman (Breiman, 2001) and Adele Cutler.

Random Forest builds a set of decision trees. Each tree is developed from a bootstrap sample from the training data. When developing individual trees, an arbitrary subset of attributes is drawn (hence the term "Random"), from which the best attribute for the split is selected. The final model is based on the majority vote from individually developed trees in the forest.

Random Forest works for both classification and regression tasks.

• • •	Random Forest					
Name			0			
Random Forest						
Basic Properties			0			
Number of trees:		10	٥			
Number of attri	5	٥				
Fixed seed for r	Fixed seed for random generator:					
Growth Control			0			
Limit depth of in	ndividual trees:	3	0			
🗹 Do not split sub	osets smaller than:	5	0			
Report 🗹	Apply Automatically	/	0			

- 1. Specify the name of the model. The default name is "Random Forest".
- 2. Specify how many decision trees will be included in the forest (*Number of trees in the forest*), and how many attributes will be arbitrarily drawn for consideration at each node. If the latter is not specified (option *Number of attributes*... left unchecked), this number is equal to the square root of the number of attributes in the data. You can also choose to fix the seed for tree generation (*Fixed seed for random generator*), which enables replicability of the results.
- 3. Original Brieman's proposal is to grow the trees without any pre-prunning, but since pre-pruning often works quite well and is faster, the user can set the depth to which the trees will be grown (*Limit depth of individual trees*). Another pre-pruning option is to select the smallest subset that can be split (*Do not split subsets smaller than*).
- 4. Produce a report.
- 5. Click *Apply* to communicate the changes to other widgets. Alternatively, tick the box on the left side of the *Apply* button and changes will be communicated automatically.

Examples

For classification tasks, we use *iris* data set. Connect it to <u>Predictions</u>. Then, connect <u>File</u> to **Random Forest** and **Tree** and connect them further to <u>Predictions</u>. Finally, observe the predictions for the two models.

randou	Predictions					
	Info		Predictio			
			Random Forest	Tree	iris	sepal length
	Data: 150 instances. Predictors: 2		00 : 0.67 : 0.33 → Iris-vers	0.00 : 0.02 : 0.98 → Iris-virgi	Iris-versicolor	5.900
Tree	Task: Classification		00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.100
Random Forest	Restore Original Order		00 : 0.61 : 0.39 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.300
			00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.100
Name	Show	75 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.400
Random Forest	Predicted class		00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.600
Basic Properties	Predicted probabilities for:	77 0.0	00 : 0.97 : 0.03 → Iris-vers	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.800
	Iris-setosa	78 <u>0.</u>	00 : 0.71 : 0.29 → Iris-versi	0.00 : 0.67 : 0.33 → Iris-vers	Iris-versicolor	6.700
Number of trees: 10 🗘	Iris-versicolor	79 <u>0.</u>	00 : 0.99 : 0.01 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.000
Number of attributes considered at each split: 5 0	Iris-virginica	80 <u>0.</u>	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.700
		 81 0.0 	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.500
Fixed seed for random generator: 0		82 <u>0.0</u>	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.500
	Draw distribution bars	83 <u>0.</u>	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.800
Growth Control	Data View	84 <u>0.</u>	00 : 0.33 : 0.67 → Iris-virgi	0.00 : 0.67 : 0.33 → Iris-vers	Iris-versicolor	6.000
Limit depth of individual trees: 3		85 <u>0.</u>	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.400
	Show full data set	86 <u>0.0</u>	00 : 0.89 : 0.11 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.000
✓ Do not split subsets smaller than: 5 5	Output	87 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.700
	Original data	88 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.300
	Predictions	89 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.600
Report ✓ Apply Automatically	Probabilities	90 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.500
		91 <u>0.(</u>	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	5.500
	Report	92 0.0	00 : 1.00 : 0.00 → Iris-versi	0.00 : 0.98 : 0.02 → Iris-vers	Iris-versicolor	6.100

For regressions tasks, we will use *housing* data. Here, we will compare different models, namely **Random Forest**, Linear Regression and Constant, in the Test&Score widget.

		Test & Score
	Sampling	Evaluation Results
Constant B	Cross validation Number of folds: 10 Stratified Random sampling	Method MSE RMSE MAE R2 Random Forest 11.372 3.372 2.309 0.865 Linear Regression 23.370 4.834 3.376 0.723 Constant 84.644 9.200 6.662 -0.003
	Limit depth of individual trees: Do not split subsets smaller than:	3 0
	Report Apply Automatical	

References

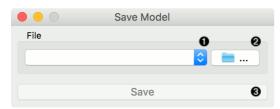
Breiman, L. (2001). Random Forests. In Machine Learning, 45(1), 5-32. Available here

Save Model

Save a trained model to an output file.

Signals

Inputs:

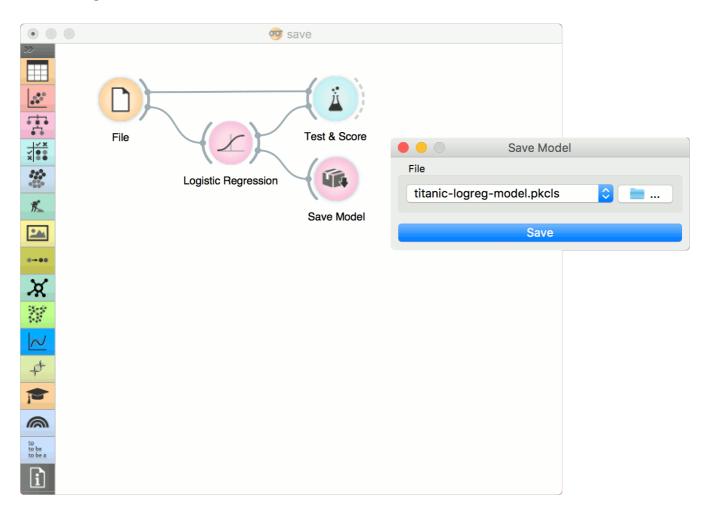

• Model

A model with selected parameters

Outputs:

• None

Description


- 1. Choose from previously saved models.
- 2. Save the created model with the *Browse* icon. Click on the icon and enter the name of the file. The model will be saved to a pickled file.

	Save	
Save As:	my-model	~
Tags:		
Where:	📄 orange	\diamond
	Pickled model (*.pkcls)	
		Cancel Save

3. Save the model.

Example

When you want to save a custom-set model, feed the data to the model (e.g. Logistic Regression) and connect it to **Save Model**. Name the model; load it later into workflows with Load Model. Data sets used with Load Model have to contain compatible attributes.

Stochastic Gradient Descent

Minimize an objective function using a stochastic approximation of gradient descent.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A SGD learning algorithm with settings as specified in the dialog.

• Model

A trained model. Output signal sent only if input Data is present.

Description

The **Stochastic Gradient Descent** widget uses <u>stochastic gradient descent</u> that minimizes a chosen loss function with a linear function. The algorithm approximates a true gradient by considering one sample at a time, and simultaneously updates the model based on the gradient of the loss function. For regression, it returns predictors as minimizers of the sum, i.e. M-estimators, and is especially useful for large-scale and sparse data sets.

Stochastic Gradient Descent			
Name		6	
SGD			
Algorithm		6	
Classificaton loss function:	Hinge	<u></u>	
	ε:	0,10 🗘	
Regression loss function:	Squared Loss	\$	
	ε:	0,10 🗘	
Regularization			
Regularization method:	Ridge (L2)	\$	
Regularization strength (α):		0,00001 🗘	
Mixing parameter:		0,15 🗘	
Learning parameters			
Learning parameters Learning rate:	Constant	¢	
	Constant	¢ 0,0100 ¢	
Learning rate:			
Learning rate: Initial learning rate (ŋ₀):		0,0100 🗘	
Learning rate: Initial learning rate (η_0): Inverse scaling exponent (t):		0,0100 C	
Learning rate: Initial learning rate (ŋ₀): Inverse scaling exponent (t): Number of iterations:	eration	0,0100 C	
Learning rate: Initial learning rate (ŋ₀): Inverse scaling exponent (t): Number of iterations: ✓ Shuffle data after each it Fixed seed for random sh	eration huffling:	0,0100 ¢ 0,2500 ¢ 5 ¢	
Learning rate: Initial learning rate (η₀): Inverse scaling exponent (t): Number of iterations: ✓ Shuffle data after each it Fixed seed for random sh	eration	0,0100 ¢ 0,2500 ¢ 5 ¢	

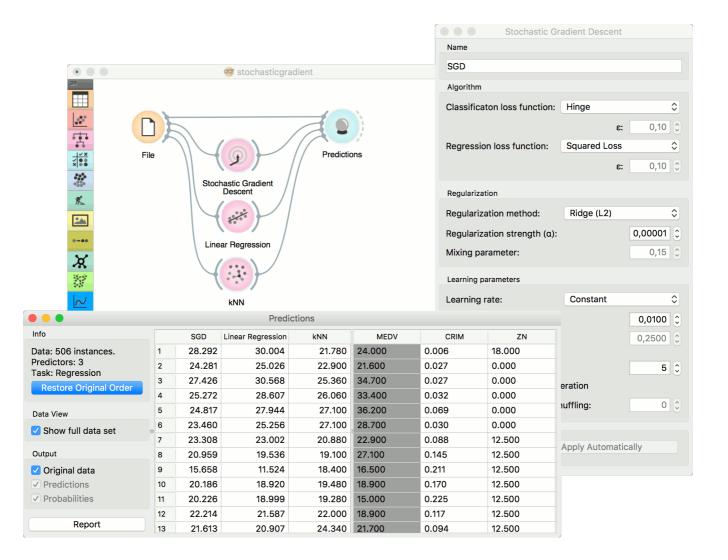
- 1. Specify the name of the model. The default name is "SGD".
- 2. Algorithm parameters. Classification loss function:
 - Hinge (linear SVM)
 - Logistic Regression (logistic regression SGD)
 - Modified Huber (smooth loss that brings tolerance to outliers as well as probability estimates)
 - Squared Hinge (quadratically penalized hinge)
 - Perceptron (linear loss used by the perceptron algorithm)
 - Squared Loss (fitted to ordinary least-squares)
 - Huber (switches to linear loss beyond ε)
 - Epsilon insensitive (ignores errors within ε, linear beyond it)
 - Squared epsilon insensitive (loss is squared beyond ε -region).

Regression loss function:

- Squared Loss (fitted to ordinary least-squares)
- Huber (switches to linear loss beyond ε)
- Epsilon insensitive (ignores errors within ε , linear beyond it)
- Squared epsilon insensitive (loss is squared beyond ε-region).
- 3. Regularization norms to prevent overfitting:
 - None.
 - Lasso (L1) (L1, leading to sparse solutions)
 - Ridge (L2) (L2, standard regularizer)
 - Elastic net (mixing both penalty norms).

Regularization strength defines how much regularization will be applied (the less we regularize, the more we al-

low the model to fit the data) and the mixing parameter what the ratio between L1 and L2 loss will be (if set to 0 then the loss is L2, if set to 1 then it is L1).


- 4. Learning parameters.
 - Learning rate:
 - Constant: learning rate stays the same through all epochs (passes)
 - Optimal: a heuristic proposed by Leon Bottou
 - Inverse scaling: earning rate is inversely related to the number of iterations
 - Initial learning rate.
 - Inverse scaling exponent: learning rate decay.
 - Number of iterations: the number of passes through the training data.
 - If Shuffle data after each iteration is on, the order of data instances is mixed after each pass.
 - If *Fixed seed for random shuffling* is on, the algorithm will use a fixed random seed and enable replicating the results.
- 7. Produce a report.
- 8. Press *Apply* to commit changes. Alternatively, tick the box on the left side of the *Apply* button and changes will be communicated automatically.

Examples

For the classification task, we will use *iris* data set and test two models on it. We connected <u>Stochastic Gradient Descent</u> and <u>Tree</u> to <u>Test & Score</u>. We also connected <u>File</u> to **Test & Score** and observed model performance in the widget.

		Stochastic Gradient Descent	
		Name	
• • •	🤓 stochasticgradient	SGD	
22		Algorithm	
		Classificaton loss function: Hinge	
		ε: 0,10 (
		Regression loss function: Squared Loss	
File	Test & Score	ɛ : 0,10	
2 8	Stochastic Gradient		
18 <u>*</u>	Descent	Regularization	
		Regularization method: Ridge (L2)	
8-00		Regularization strength (α): 0,00001	
×	Tree	Mixing parameter: 0,15	
	Test & Score	Learning parameters	
Sampling	Evaluation Results		
Cross validation	Method V AUC CA F1 Precision Recall	Learning rate: Constant	
Number of folds: 10 ♀ ✓ Stratified	SGD 0.870 0.827 0.823 0.842 0.827 Tree 0.975 0.960 0.960 0.960 0.960	Initial learning rate (η ₀): 0,0100	
Random sampling	Tree 0.975 0.960 0.960 0.960 0.960	Inverse scaling exponent (t): 0,2500	
Repeat train/test: 10 🗘		Number of iterations: 5	
Training set size: 66 % 🗘		✓ Shuffle data after each iteration	
✓ Stratified	•	Fixed seed for random shuffling: 0	
 Leave one out Test on train data 			
Test on test data			
		Report Apply Automatically	
Terret Olere			
Target Class			
Target Class (Average over classes)			

For the regression task, we will compare three different models to see which predict what kind of results. For the purpose of this example, the *housing* data set is used. We connect the <u>File</u> widget to **Stochastic Gradient Descent**, Linear Regression and kNN widget and all four to the Predictions widget.

SVM

Support Vector Machines map inputs to higher-dimensional feature spaces.

Signals

Inputs:

• Data

A data set.

• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A support vector machine learning algorithm with settings as specified in the dialog.

• Model

A trained model. Output signal sent only if input Data is present.

• Support Vectors

A subset of data instances from the training set that were used as support vectors in the trained model.

Description

<u>Support vector machine</u> (SVM) is a machine learning technique that separates the attribute space with a hyperplane, thus maximizing the margin between the instances of different classes or class values. The technique often yields supreme predictive performance results. Orange embeds a popular implementation of SVM from the <u>LIBSVM</u> package. This widget is its graphical user interface.

For regression tasks, **SVM** performs linear regression in a high dimension feature space using an ε -insensitive loss. Its estimation accuracy depends on a good setting of C, ε and kernel parameters. The widget outputs class predictions based on a **SVM** Regression.

The widget works for both classification and regression tasks.

• • •	SVM		
Name			0
SVM			
SVM Type			0
O SVM	Cost (C	:): 1,00	0
Re	gression loss epsilon (a	:): 0,10	٢
Ον-SVM	Regression cost (C	:): 1,00	٢
	Complexity bound (v	/): 0,50	٢
Kernel			0
Linear	Kernel: exp(-g x-	y ²)	
Polynomial	g:	auto	0
O RBF			
Sigmoid			
Optimization Pa	rameters		Ø
Numerical tole	erance:	0,0010	0
Iteration lin	nit:	100	
			Ū
0	-		0
Report	Apply Auton	natically	

- 1. The learner can be given a name under which it will appear in other widgets. The default name is "SVM".
- 2. SVM type with test error settings. *SVM* and *v-SVM* are based on different minimization of the error function. On the right side, you can set test error bounds:
 - SVM:
 - Cost: penalty term for loss and applies for classification and regression tasks.
 - ε: a parameter to the epsilon-SVR model, applies to regression tasks. Defines the distance from true values within which no penalty is associated with predicted values.
 - \circ <u>v-SVM</u>:
 - Cost: penalty term for loss and applies only to regression tasks
 - v: a parameter to the v-SVR model, applies to classification and regression tasks. An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors.
- 3. Kernel is a function that transforms attribute space to a new feature space to fit the maximum-margin hyperplane, thus allowing the algorithm to create the model with:
 - Linear
 - Polynomial
 - RBF and
 - Sigmoid

kernels. Functions that specify the kernel are presented upon selecting them, and the constants involved are:

- **g** for the gamma constant in kernel function (the recommended value is 1/k, where k is the number of the attributes, but since there may be no training set given to the widget the default is 0 and the user has to set this option manually),
- **c** for the constant co in the kernel function (default o), and
- $\circ~\mathbf{d}$ for the degree of the kernel (default 3).
- 4. Set permitted deviation from the expected value in *Numerical Tolerance*. Tick the box next to *Iteration Limit* to set the maximum number of iterations permitted.

- 5. Produce a report.
- 6. Click *Apply* to commit changes. If you tick the box on the left side of the *Apply* button, changes will be communicated automatically.

Examples

In the first (regression) example, we have used *housing* data set and split the data into two data subsets (*Data Sample* and *Remaining Data*) with <u>Data Sample</u>. The sample was sent to SVM which produced a *Model*, which was then used in <u>Predictions</u> to predict the values in *Remaining Data*. A similar schema can be used if the data is already in two separate files; in this case, two File widgets would be used instead of the File - Data Sampler combination.

The second example shows how to use **SVM** in combination with <u>Scatterplot</u>. The following workflow trains a SVM model on *iris* data and outputs support vectors, which are those data instances that were used as support vectors in the learning phase. We can observe which are these data instances in a scatter plot visualization. Note that for the workflow to work correctly, you must set the links between widgets as demonstrated in the screenshot below.

References

Introduction to SVM on StatSoft.

Tree

A tree algorithm with forward pruning.

Signals

Inputs:

• Data

A data set

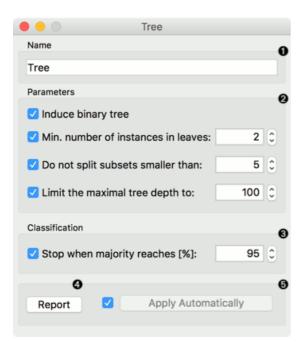
• Preprocessor

Preprocessing method(s)

Outputs:

• Learner

A decision tree learning algorithm with settings as specified in the dialog.


• Model

A subset of data instances from the training set that were used as support vectors in the trained model.

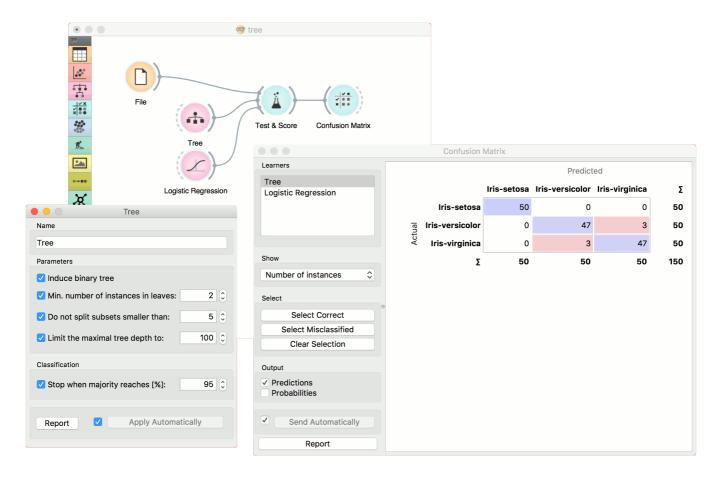
Description

Tree is a simple algorithm that splits the data into nodes by class purity. It is a precursor to **Random Forest**. Tree in Orange is designed in-house and can handle both discrete and continuous data sets.

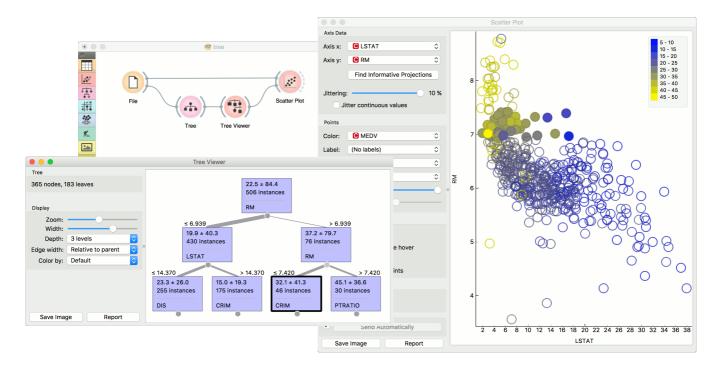
It can also be used for both classification and regression tasks.

- 1. The learner can be given a name under which it will appear in other widgets. The default name is "Tree".
- 2. Tree parameters: **Induce binary tree**: build a binary tree (split into two child nodes) **Min. number of in-stances in leaves**: if checked, the algorithm will never construct a split which would put less than the specified

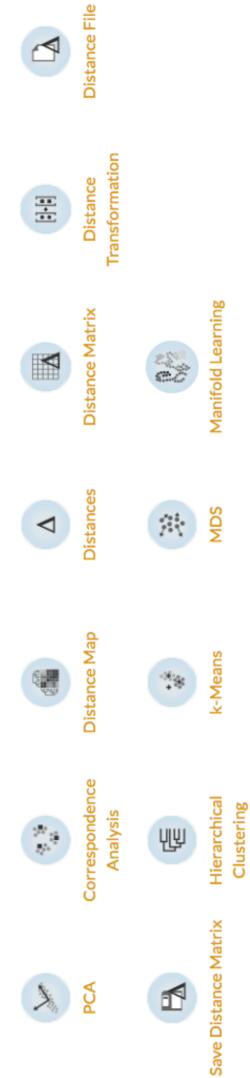
number of training examples into any of the branches. - **Do not split subsets smaller than**: forbids the algorithm to split the nodes with less than the given number of instances. - **Limit the maximal tree depth**: limits the depth of the classification tree to the specified number of node levels.


- 3. Stop when majority reaches [%]: stop splitting the nodes after a specified majority threshold is reached
- 4. Produce a report. After changing the settings, you need to click *Apply*, which will put the new learner on the output and, if the training examples are given, construct a new classifier and output it as well. Alternatively, tick the box on the left and changes will be communicated automatically.

Examples


There are two typical uses for this widget. First, you may want to induce a model and check what it looks like in <u>Tree</u> Viewer.

• • • • • • • • • • • • • • • • • • •	🤓 tree		
	Fle Tree Name Tree Parameters Induce binary tree Induce binary tree Min. number of instances in leaves: 2 0 Do not split subsets smaller than: 5 0 C Limit the maximal tree depth to:	Tree 9 nodes, 5 leaves Display Zoom: Width: Depth: 3 levels Edge width: Relative to parent Target class: None Save Image Report	Tree Viewer
Se be to be a	Classification Classification Classification Stop when majority reaches [%]: 95		
	Report Apply Automatically		


The second schema trains a model and evaluates its performance against Logistic Regression.

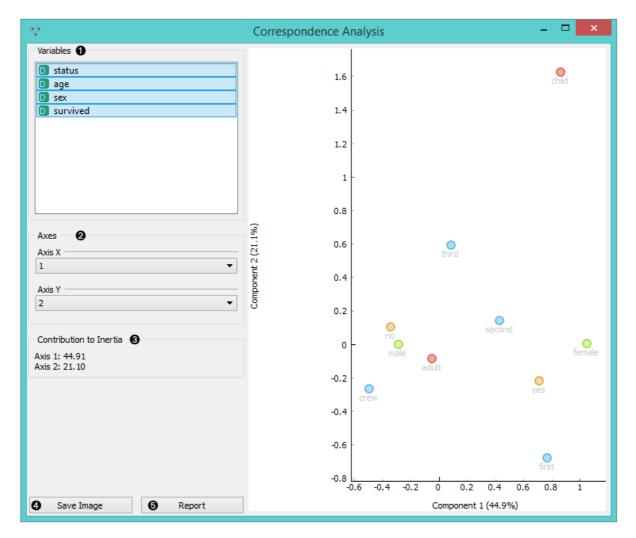
We used the *iris* data set in both examples. However, **Tree** works for regression tasks as well. Use *housing* data set and pass it to **Tree**. The selected tree node from <u>Tree Viewer</u> is presented in the <u>Scatter Plot</u> and we can see that the selected examples exhibit the same features.

Correspondence Analysis

Signals

Inputs:

• Data


A data set.

Outputs:

• None

Description

<u>Correspondence Analysis</u> (CA) computes the CA linear transformation of the input data. While it is similar to PCA, CA computes linear transformation on discrete rather than on continuous data.

1. Select the variables you want to see plotted.

2. Select the component for each axis.

3. Inertia values (percentage of independence from transformation, i.e. variables are in the same dimension).

4. Produce a report.

Example

Below, is a simple comparison between the **Correspondence Analysis** and <u>Scatter plot</u> widgets on the *Titanic* data set. While the <u>Scatter plot</u> shows fairly well which class and sex had a good survival rate and which one didn't, **Correspondence Analysis** can plot several variables in a 2-D graph, thus making it easy to see the relations between variable values. It is clear from the graph that "no", "male" and "crew" are related to each other. The same goes for "yes", "female" and "first".

Distance File

Loads an existing distance file.

Signals

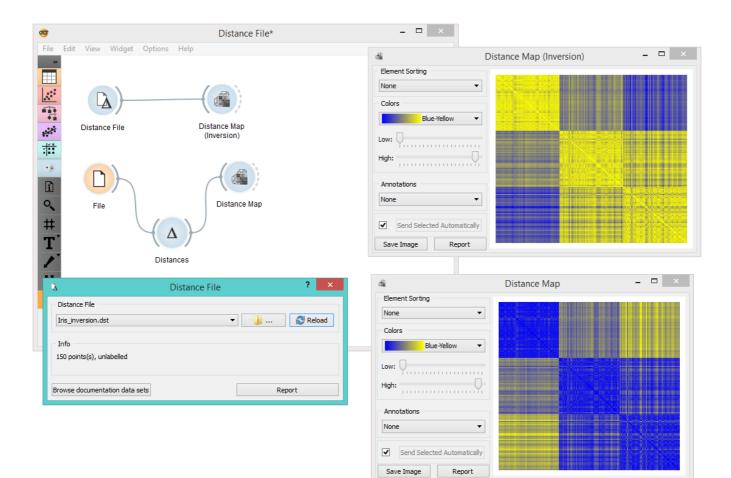
Inputs:

• None

Outputs:

• Distance File

A distance matrix.


Description

à	Distance File		? ×
Distance File Iris_inversion.dst		⊘ ▼ <u>]</u> }	3 S Reload
Info 🕢 150 points(s), unlabelled			
Browse documentation data sets	Ð	Repo	ort 🛈

- 1. Choose from a list of previously saved distance files.
- 2. Browse for saved distance files.
- 3. Reload the selected distance file.
- 4. Information about the distance file (number of points, labelled/unlabelled)
- 5. Browse documentation data sets.
- 6. Produce a report.

Example

When you want to use a custom-set distance file that you've saved before, open the **Distance File** widget and select the desired file with the *Browse* icon. This widget loads the existing distance file. In the snapshot below, we loaded the transformed *Iris* distance matrix from the <u>Save Distance Matrix</u> example. We displayed the transformed data matrix in the <u>Distance Map</u> widget. We also decided to display a distance map of the original *Iris* data set for comparison.

Distance Map

Visualizes distances between items.

Signals

Inputs:

• Distances

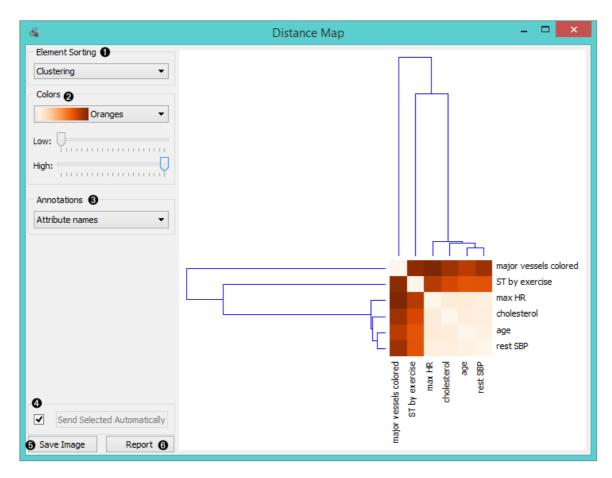
A distance matrix.

Outputs:

• Data

Instances corresponding to the selected elements of the matrix.

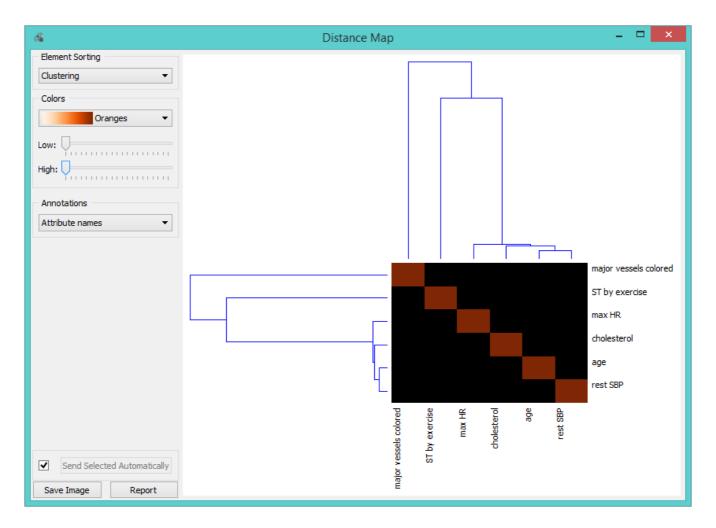
• Features


Attributes corresponding to the selected elements of the matrix.

Description

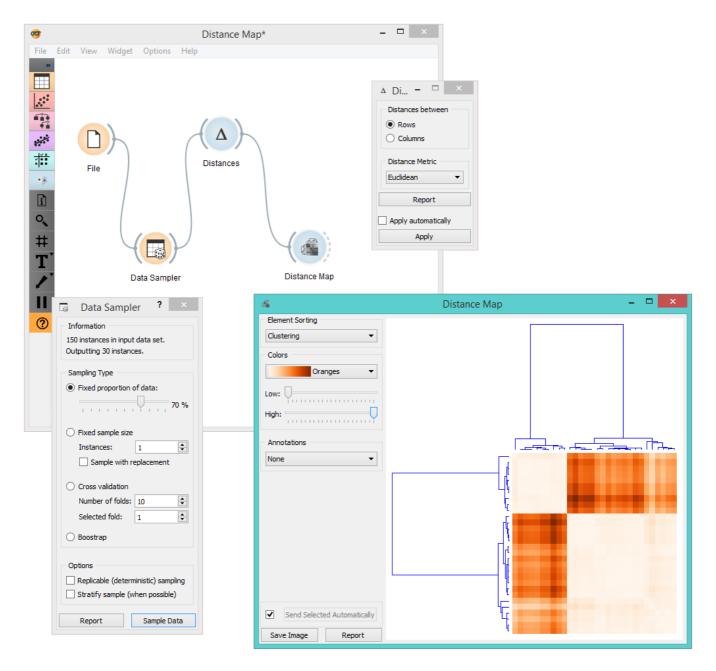
The **Distance Map** visualizes distances between objects. The visualization is the same as if we printed out a table of numbers, except that the numbers are replaced by colored spots.

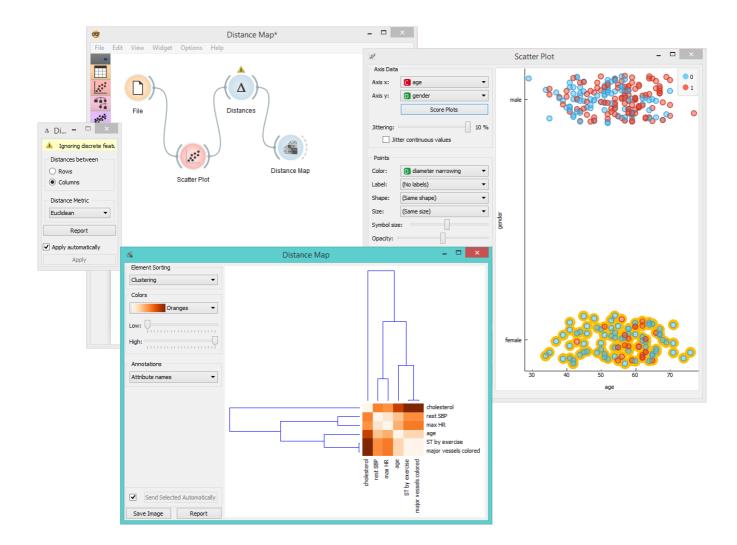
Distances are most often those between instances ("*rows*" in the <u>Distances</u> widget) or attributes ("*columns*" in <u>Di-</u> <u>stances</u> widget). The only suitable input for **Distance Map** is the <u>Distances</u> widget. For the output, the user can select a region of the map and the widget will output the corresponding instances or attributes. Also note that the **Distances** widget ignores discrete values and calculates distances only for continuous data, thus it can only display distance map for discrete data if you <u>Continuize</u> them first.


The snapshot shows distances between columns in the *heart disease* data, where smaller distances are represented with light and larger with dark orange. The matrix is symmetric and the diagonal is a light shade of orange - no attribute is different from itself. Symmetricity is always assumed, while the diagonal may also be non-zero.

- 1. Element sorting arranges elements in the map by
 - None (lists instances as found in the data set)
 - **Clustering** (clusters data by similarity)
 - Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)
- 2. Colors
 - **Colors** (select the color palette for your distance map)
 - **Low** and **High** are thresholds for the color palette (low for instances or attributes with low distances and high for instances or attributes with high distances).
- 3. Select Annotations.
- 4. If *Send Selected Automatically* is on, the data subset is communicated automatically, otherwise you need to press *Send Selected*.
- 5. Press Save Image if you want to save the created image to your computer.
- 6. Produce a report.

Normally, a color palette is used to visualize the entire range of distances appearing in the matrix. This can be changed by setting the low and high threshold. In this way we ignore the differences in distances outside this interval and visualize the interesting part of the distribution.


Below, we visualized the most correlated attributes (distances by columns) in the *heart disease* data set by setting the color threshold for high distances to the minimum. We get a predominantly black square, where attributes with the lowest distance scores are represented by a lighter shade of the selected color schema (in our case: orange). Beside the diagonal line, we see that in our example *ST by exercise* and *major vessels colored* are the two attributes closest together.


The user can select a region in the map with the usual click-and-drag of the cursor. When a part of the map is selected, the widget outputs all items from the selected cells.

Examples

The first workflow shows a very standard use of the **Distance Map** widget. We select 70% of the original *Iris* data as our sample and view the distances between rows in **Distance Map**.

In the second example, we use the *heart disease* data again and select a subset of women only from the <u>Scatter Plot</u>. Then, we visualize distances between columns in the **Distance Map**. Since the subset also contains some discrete data, the <u>Distances</u> widget warns us it will ignore the discrete features, thus we will see only continuous instances/at-tributes in the map.

Distance Matrix

Visualizes distance measures in a distance matrix.

Signals

Inputs:

• Distances

A distance matrix.

Outputs:

• Distances

A distance matrix.

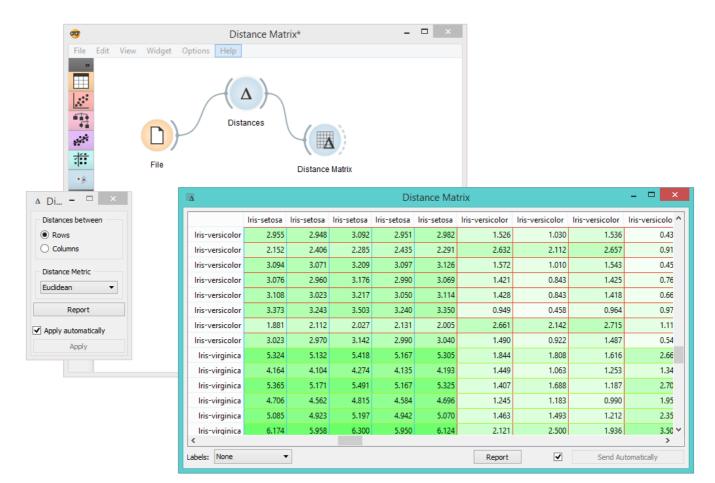
• Table

Distance measures in a distance matrix.

Description

The **Distance Matrix** widget creates a distance matrix, which is a two-dimensional array containing the distances, taken pairwise, between the elements of a set. The number of elements in the data set defines the size of the matrix. Data matrices are essential for hierarchical clustering and they are extremely useful in bioinformatics as well, where they are used to represent protein structures in a coordinate-independent manner.

Δ	Distance Matrix – 🗆 🗙								
0	lris-setosa	lris-setosa	lris-setosa	lris-setosa	lris-setosa	lris-versicolor	lris-versicolor	lris-versicolor	Iris-versicolo ^
lris-versicolor	2.955	2.948	3.092	2.951	2.982	1.526	1.030	1.536	0.43
Iris-versicolor	2.152	2.406	2.285	2.435	2.291	2.632	2.112	2.657	0.91
Iris-versicolor	3.094	3.071	3.209	3.097	3.126	1.572	1.010	1.543	0.45
Iris-versicolor	3.076	2.960	3.176	2.990	3.069	1.421	0.843	1.425	0.76
lris-versicolor	3.108	3.023	3.217	3.050	3.114	1.428	0.843	1.418	0.66
Iris-versicolor	3.373	3.243	3.503	3.240	3.350	0.949	0.458	0.964	0.97
Iris-versicolor	1.881	2.112	2.027	2.131	2.005	2.661	2.142	2.715	1.11
Iris-versicolor	3.023	2.970	3.142	2.990	3.040	1.490	0.922	1.487	0.54
lris-virginica	5.324	5.132	5.418	5.167	5.305	1.844	1.808	1.616	2.66
lris-virginica	4.164	4.104	4.274	4.135	4.193	1.449	1.063	1.253	1.34
lris-virginica	5.365	5.171	5.491	5.167	5.325	1.407	1.688	1.187	2.70
lris-virginica	4.706	4.562	4.815	4.584	4.696	1.245	1.183	0.990	1.95
lris-virginica	5.085	4.923	5.197	4.942	5.070	1.463	1.493	1.212	2.35
lris-virginica ∢	6.174	5.958	6.300	5.950	6.124	2.121	2.500	1.936	3.50 ~
Labels: None							tomatically		


- 1. Elements in the data set and the distances between them
- 2. Label the table. The options are: *none*, *enumeration*, *according to variables*.
- 3. Produce a report.
- 4. Click Send to communicate changes to other widgets. Alternatively, tick the box in front of the Send button and

changes will be communicated automatically (Send Automatically).

The only two suitable inputs for **Distance Matrix** are the <u>Distances</u> widget and the <u>Distance Transformation</u> widget. The output of the widget is a data table containing the distance matrix. The user can decide how to label the table and the distance matrix (or instances in the distance matrix) can then be visualized or displayed in a separate data table.

Example

The example below displays a very standard use of the **Distance Matrix** widget. We compute the distances between rows in the sample from the *Iris* data set and output them in the **Distance Matrix**. It comes as no surprise that Iris Virginica and Iris Setosa are the furthest apart.

Distance Transformation

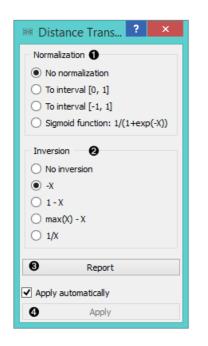
Transforms distances in a data set.

Signals

Inputs:

• Distances

A distance matrix

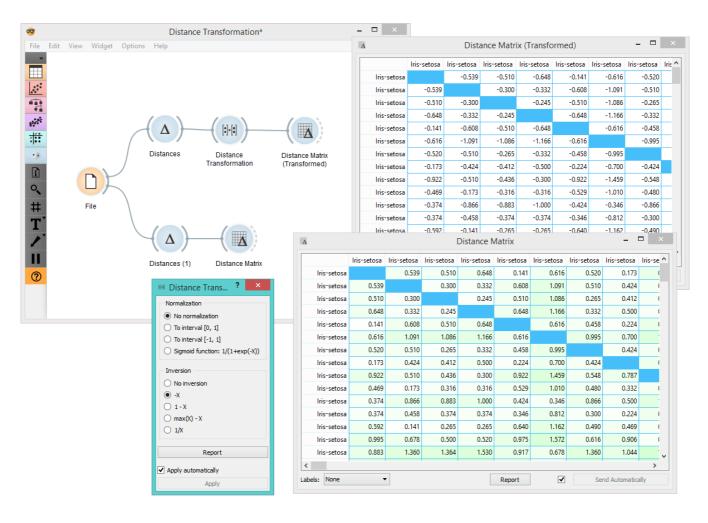

Outputs:

• Distances

A distance matrix

Description

The **Distances Transformation** widget is used for the normalization and inversion of distance matrices. The normalization of data is necessary to bring all the variables into proportion with one another.


- 1. Choose the type of Normalization:
 - No normalization
 - To interval [0, 1]
 - To interval [-1, 1]
 - Sigmoid function: 1/(1+exp(-X))
- 2. Choose the type of Inversion:
 - No inversion
 - **-X**
 - **1 X**
 - max(X) X

• 1/X

- 3. Produce a report.
- 4. After changing the settings, you need to click *Apply* to commit changes to other widgets. Alternatively, tick *Apply automatically*.

Example

In the snapshot below, you can see how transformation affects the distance matrix. We loaded the *Iris* data set and calculated the distances between rows with the help of the <u>Distances</u> widget. In order to demonstrate how **Distance Transformation** affects the <u>Distance Matrix</u>, we created the worflow below and compared the transformed distance matrix with the "original" one.

Distances

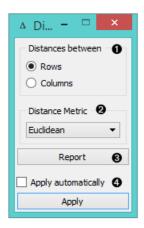
Computes distances between rows/columns in a data set.

Signals

Inputs:

• Data

A data set


Outputs:

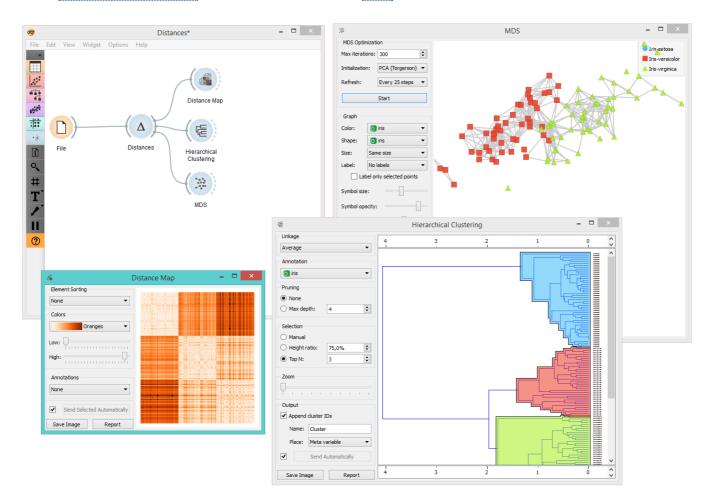
• Distances

A distance matrix

Description

The **Distances** widget computes distances between rows or columns in a data set.

- 1. Choose whether to measure distances between rows or columns.
- 2. Choose the *Distance Metric*:
 - Euclidean ("straight line", distance between two points)
 - Manhattan (the sum of absolute differences for all attributes)
 - Cosine (the cosine of the angle between two vectors of an inner product space)
 - Jaccard (the size of the intersection divided by the size of the union of the sample sets)
 - Spearman (linear correlation between the rank of the values, remapped as a distance in a [0, 1] interval)
 - Spearman absolute (linear correlation between the rank of the absolute values, remapped as a distance in a [0, 1] interval)
 - Pearson (linear correlation between the values, remapped as a distance in a [0, 1] interval)
 - Pearson absolute (linear correlation between the absolute values, remapped as a distance in a [0, 1] interval)


In case of missing values, the widget automatically imputes the average value of the row or the column.

Since the widget cannot compute distances between discrete and continuous attributes, it only uses continuous attributes and ignores the discrete ones. If you want to use discrete attributes, continuize them with the <u>Continuize</u> widget first.

- 3. Produce a report.
- 4. Tick Apply Automatically to automatically commit changes to other widgets. Alternatively, press 'Apply'.

Example

This widget needs to be connected to another widget to display results, for instance to <u>Distance Map</u> to visualize distances, Hierarchical Clustering to cluster the attributes, or MDS to visualize the distances in a plane.

Hierarchical Clustering

Groups items using a hierarchical clustering algorithm.

Signals

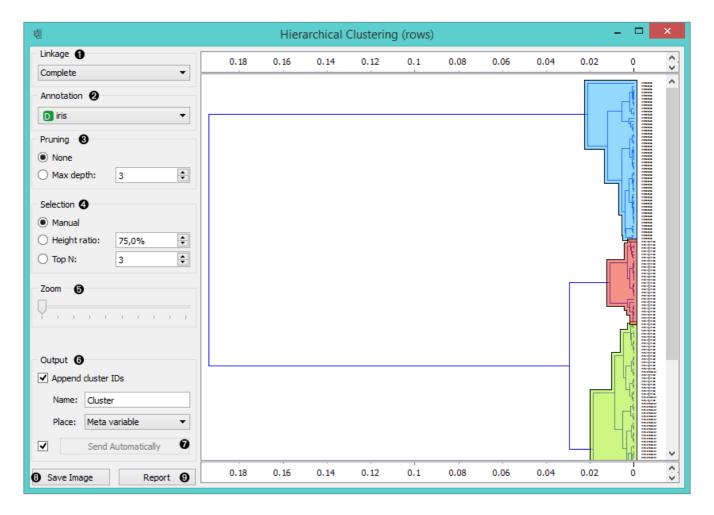
Inputs:

• Distances

A distance matrix

Outputs:

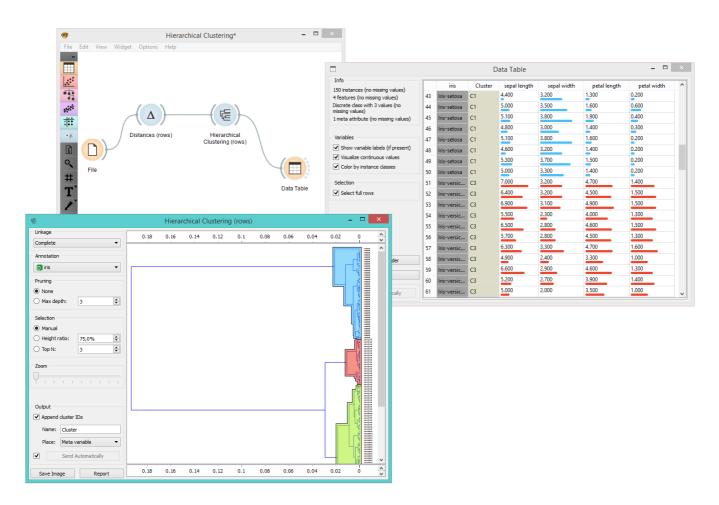
Selected Data

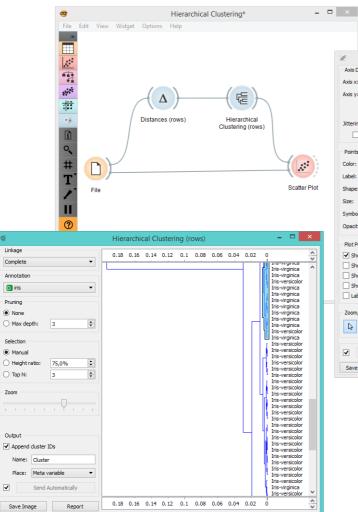

A data subset

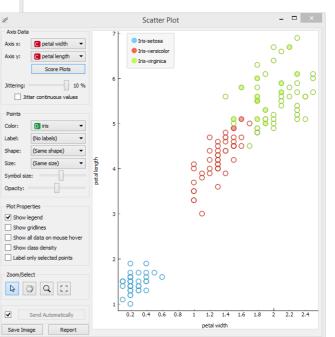
Other Data

Remaining data

Description


The widget computes <u>hierarchical clustering</u> of arbitrary types of objects from a matrix of distances and shows a corresponding <u>dendrogram</u>.


- 1. The widget supports four ways of measuring distances between clusters:
 - Single linkage computes the distance between the closest elements of the two clusters
 - Average linkage computes the average distance between elements of the two clusters
 - Weighted linkage uses the WPGMA method
 - Complete linkage computes the distance between the clusters' most distant elements
- 2. Labels of nodes in the dendrogram can be chosen in the Annotation box.
- 3. Huge dendrograms can be pruned in the *Pruning* box by selecting the maximum depth of the dendrogram. This only affects the display, not the actual clustering.
- 4. The widget offers three different selection methods:
 - **Manual** (Clicking inside the dendrogram will select a cluster. Multiple clusters can be selected by holding Ctrl/Cmd. Each selected cluster is shown in a different color and is treated as a separate cluster in the output.)
 - **Height ratio** (Clicking on the bottom or top ruler of the dendrogram places a cutoff line in the graph. Items to the right of the line are selected.)
 - $\circ~$ Top N (Selects the number of top nodes.)
- 5. Use Zoom and scroll to zoom in or out.
- 6. If the items being clustered are instances, they can be added a cluster index (*Append cluster IDs*). The ID can appear as an ordinary **Attribute**, **Class attribute** or a **Meta attribute**. In the second case, if the data already has a class attribute, the original class is placed among meta attributes.
- 7. The data can be automatically output on any change (*Auto send is on*) or, if the box isn't ticked, by pushing *Send Data*.
- 8. Clicking this button produces an image that can be saved.
- 9. Produce a report.


Examples

The workflow below shows the output of **Hierarchical Clustering** for the *Iris* data set in <u>Data Table</u> widget. We see that if we choose *Append cluster IDs* in hierarchical clustering, we can see an additional column in the <u>Data Table</u> named *Cluster*. This is a way to check how hierarchical clustering clustered individual instances.

In the second example, we loaded the *Iris* data set again, but this time we added the <u>Scatter Plot</u>, showing all the instances from the <u>File</u> widget, while at the same time receiving the selected instances signal from **Hierarchical Clustering**. This way we can observe the position of the selected cluster(s) in the projection.

k-Means

Groups items using the k-Means clustering algorithm.

Signals

Inputs:

• Data

A data set.

Outputs:

• Data

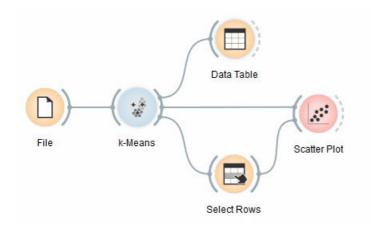
A data set with cluster index as a class attribute.

Description

The widget applies the <u>k-Means clustering</u> algorithm to the data and outputs a new data set in which the cluster index is used as a class attribute. The original class attribute, if it exists, is moved to meta attributes. Scores of clustering results for various k are also shown in the widget.

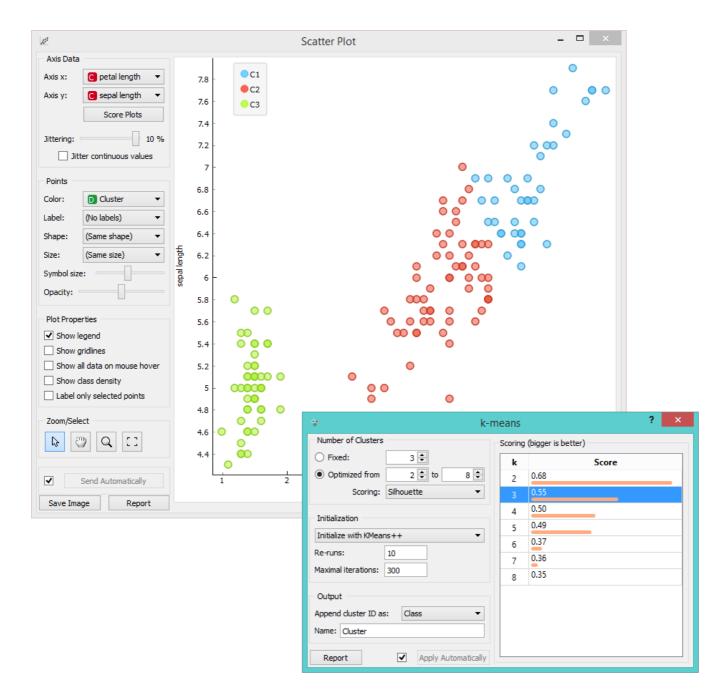
¥ k-	means ? ×
Number of Clusters (Scoring (bigger is better) 🗿
○ Fixed: 3	k Score
Optimized from 2 to 8	2 0.68
Scoring: Silhouette 👻	3 0.55
Initialization 2	4 0.50
Initialize with KMeans++	5 0.49
	6 0.37
Re-runs: 10	7 0.36
Maximal iterations: 300	8 0.35
Output 🔞	
Append cluster ID as: Class 👻	
Name: Cluster	
Report Image: Constraint of the second	

- 1. Select the number of clusters.
 - Fixed: algorithm clusters data in a specified number of clusters.
 - **Optimized**: widget shows clustering scores for the selected cluster range.
 - <u>Silhouette</u> (contrasts average distance to elements in the same cluster with the average distance to elements in other clusters)
 - Inter-cluster distance (measures distances between clusters, normally between centroids)
 - **Distance to** <u>centroids</u> (measures distances to the arithmetic means of clusters)
- 2. Select the initialization method (the way the algorithm begins clustering):
 - <u>k-Means++</u> (first center is selected randomly, subsequent are chosen from the remaining points with probability proportioned to squared distance from the closest center)

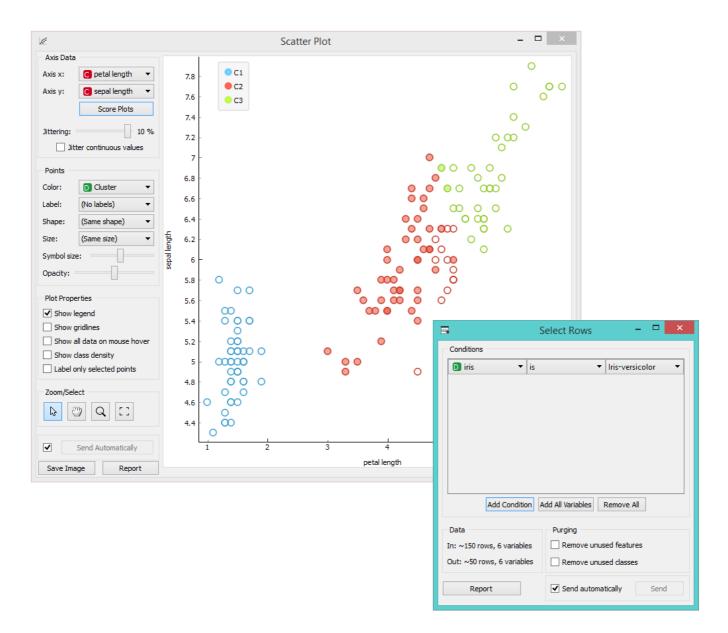

• Random initialization (clusters are assigned randomly at first and then updated with further iterations)

Re-runs (how many times the algorithm is run) and **maximal iterations** (the maximum number of iteration within each algorithm run) can be set manually.

- 3. The widget outputs a new data set with appended cluster information. Select how to append cluster information (as class, feature or meta attribute) and name the column.
- 4. If Apply Automatically is ticked, the widget will commit changes automatically. Alternatively, click Apply.
- 5. Produce a report.
- 6. Check scores of clustering results for various k.


Examples

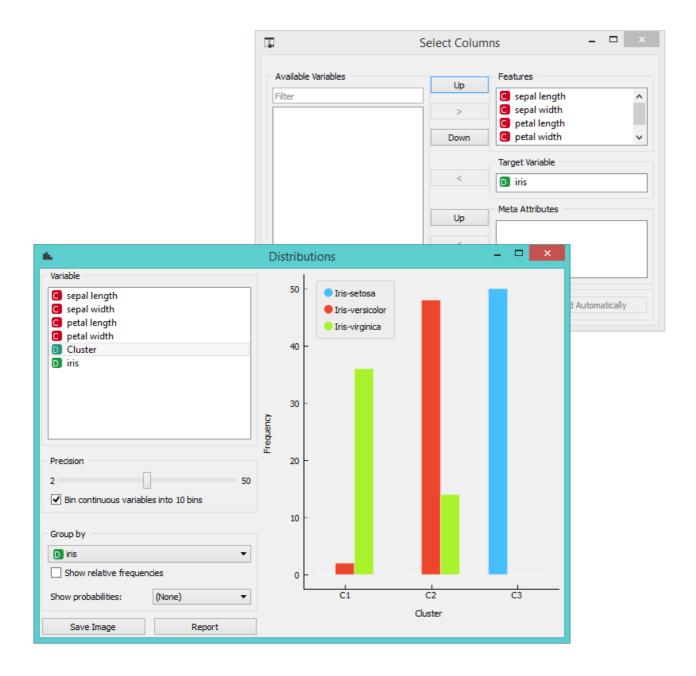
We are going to explore the widget with the following schema.



First, we load the *Iris* data set, divide it into three clusters and show it in the <u>Data Table</u>, where we can observe which instance went into which cluster. The interesting parts are the <u>Scatter Plot</u> and <u>Select Rows</u>.

Since **k-Means** added the cluster index as a class attribute, the scatter plot will color the points according to the clusters they are in.

What we are really interested in is how well the clusters induced by the (unsupervised) clustering algorithm match the actual classes in the data. We thus take <u>Select Rows</u> widget, in which we can select individual classes and have the corresponding points marked in the scatter plot. The match is perfect for *setosa*, and pretty good for the other two classes.


You may have noticed that we left the **Remove unused values/attributes** and **Remove unused classes** in <u>Select Rows</u> unchecked. This is important: if the widget modifies the attributes, it outputs a list of modified instances and the scatter plot cannot compare them to the original data.

Perhaps a simpler way to test the match between clusters and the original classes is to use the Distributions widget.

The only (minor) problem here is that this widget only visualizes normal (and not meta) attributes. We solve this by using Select Columns: we reinstate the original class *Iris* as the class and put the cluster index among the attributes.

The match is perfect for *setosa*: all instances of setosa are in the third cluster (blue). 48 *versicolors* are in the second cluster (red), while two ended up in the first. For *virginicae*, 36 are in the first cluster and 14 in the second.

Manifold Learning

Nonlinear dimensionality reduction.

Signals

Inputs:

• Data

A data set

Outputs:

Transformed Data

A data set with new, reduced coordinates.

Description

Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with Scatter Plot or other visualization widgets.

👫 Manifold	Learning	?	×
Method			0
t-SNE			-
Parameters			0
Metric:	Euclid	lean	•
Output			6
Components:			2 ≑
	Apply Automa	atically	4
			-
	Report		•

- 1. Method for manifold learning:
 - t-SNE
 - MDS, see also MDS widget
 - Isomap
 - Locally Linear Embedding
 - Spectral Embedding
- 2. Set parameters for the method:
 - t-SNE (distance measures):
 - Euclidean distance
 - Manhattan
 - Chebyshev
 - Jaccard
 - Mahalanobis
 - Cosine

- MDS (iterations and initialization):
 - max interations: maximum number of optimization interations
 - *initialization*: method for initialization of the algorithm (PCA or random)
- Isomap:
 - number of *neighbors*
- Locally Linear Embedding:
 - method:
 - standard
 - modified
 - hessian eigenmap
 - local
 - number of neighbors
 - max iterations
- Spectral Embedding:
 - affinity:
 - nearest neighbors
 - RFB kernel
- 3. Output: the number of reduced features (components).
- 4. If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
- 5. Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

... figure:: images/collage-manifold.png

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Example

Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it great for visualizing data sets with many features. We used *voting.tab* to map 16-dimensional data onto a 2D graph. Then we used <u>Scatter Plot</u> to plot the embeddings.

🤓 untitled*		– 🗆 🗙				
File Edit View Widget Options Help						
28		^				
		Scatter Plot				– 🗆 X
		Axis Data				
		Axis x: C C0	•	°°		republican
File	Scatter Plot	Axis y: C1	•	20 -	~ <i>&</i>	e democrat
***		Find Informative	Projections	000		Ъ
+ s Manifold L	earning	Jittering:	10 %			
<u>B</u>	_	Jitter continuous valu		10 -	° 0 8 ° %	
Manifold Learnin	ng ? ×	Points				
Method		Color: D party	-	0,000		8 00 0 0 8
t-SNE	•	Label: (No labels)	•	0		
Parameters		Shape: (Same shape)	•	0-80-8		
Metric:	Euclidean 🔻	Size: (Same size)	- 5			
26-6		Symbol size:		õ° o		• 80 • • • •
	2 🜩	Opacity:		-10 800		
	< Automatically	Plot Properties		~ ~ ~ ~		8 9 6 6 6 6 6
Apply		Show legend		•	ංල දී දිදු අ	
R		Show gridlines Show all data on mouse h	over	•	° 200 ° 0° 5°	
		Show class density		-20 - 🍼		
		Label only selected points	•		0	
	_	Zoom/Select				o 000
		♥ Q []		-30 -		8
		Send Automatic	cally	-50 -40	-30 -20 -10 0	10 20 30 40 50
		Save Image F	Report		C0	

MDS

Multidimensional scaling (MDS) projects items onto a plane fitted to given distances between points.

Signals

Inputs:

• Distances

A distance matrix

• Data

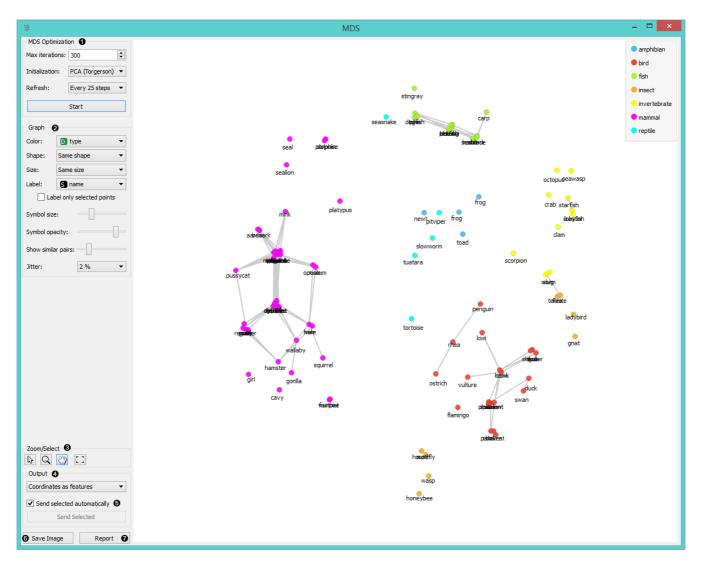
A data set

Outputs:

• Data

A data set with MDS coordinates.

• Data subset

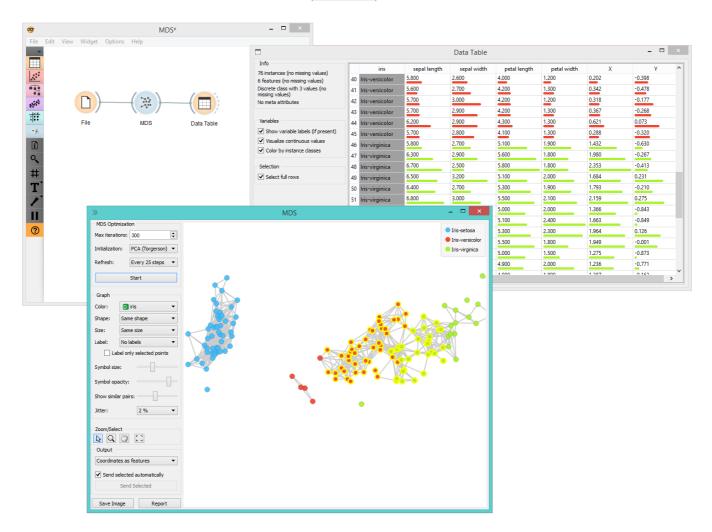

Selected data

Description

<u>Multidimensional scaling</u> is a technique which finds a low-dimensional (in our case a two-dimensional) projection of points, where it tries to fit distances between points as well as possible. The perfect fit is typically impossible to obtain since the data is high-dimensional or the distances are not <u>Euclidean</u>.

In the input, the widget needs either a data set or a matrix of distances. When visualizing distances between rows, you can also adjust the color of the points, change their shape, mark them, and output them upon selection.

The algorithm iteratively moves the points around in a kind of a simulation of a physical model: if two points are too close to each other (or too far away), there is a force pushing them apart (or together). The change of the point's position at each time interval corresponds to the sum of forces acting on it.


- 1. The widget redraws the projection during optimization. Optimization is run automatically in the beginning and later by pushing *Start*.
 - **Max iterations**: The optimization stops either when the projection changes only minimally at the last iteration or when a maximum number of iterations has been reached.
 - **Initialization**: PCA (Torgerson) positions the initial points along principal coordinate axes. *Random* sets the initial points to a random position and then readjusts them.
 - **Refresh**: Set how often you want to refresh the visualization. It can be at *Every iteration*, *Every 5/10/25/50 steps* or never (*None*). Setting a lower refresh interval makes the animation more visually appealing, but can be slow if the number of points is high.
- 2. Defines how the points are visualized. These options are available only when visalizing distances between rows (selected in the <u>Distances</u> widget).
 - Color: Color of points by attribute (gray for continuous, colored for discrete).
 - **Shape**: Shape of points by attribute (only for discrete).
 - **Size**: Set the size of points (*Same size* or select an attribute) or let the size depend on the value of the continuous attribute the point represents (Stress).
 - Label: Discrete attributes can serve as a label.
 - **Symbol size**: Adjust the size of the dots.
 - **Symbol opacity**: Adjust the transparency level of the dots.
 - Show similar pairs: Adjust the strength of network lines.
 - Jitter: Set jittering to prevent the dots from overlapping.
- 3. Adjust the graph with *Zoom/Select*. The arrow enables you to select data instances. The magnifying glass enables zooming, which can be also done by scrolling in and out. The hand allows you to move the graph around. The rectangle readjusts the graph proportionally.
- 4. Select the desired output:

- **Original features only** (input data set)
- Coordinates only (MDS coordinates)
- **Coordinates as features** (input data set + MDS coordinates as regular attributes)
- **Coordinates as meta attributes** (input data set + MDS coordinates as meta attributes)
- 5. Sending the instances can be automatic if *Send selected automatically* is ticked. Alternatively, click *Send selected*.
- 6. Save Image allows you to save the created image either as .svg or .png file to your device.
- 7. Produce a report.

The MDS graph performs many of the functions of the Visualizations widget. It is in many respects similar to the Scatter Plot widget, so we recommend reading that widget's description as well.

Example

The above graphs were drawn using the following simple schema. We used the *iris.tab* data set. Using the <u>Distances</u> widget we input the distance matrix into the **MDS** widget, where we see the *Iris* data displayed in a 2-dimensional plane. We can see the appended coordinates in the Data Table widget.

References

Wickelmaier, F. (2003). An Introduction to MDS. Sound Quality Research Unit, Aalborg University. Available here.

PCA

PCA linear transformation of input data.

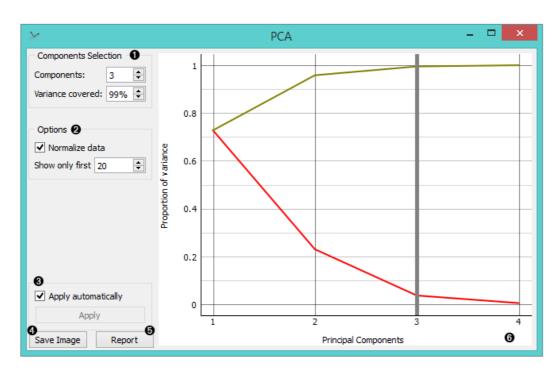
Signals

Inputs:

• Data

A data set.

Outputs:


Transformed Data

PCA transformed input data.

• Components

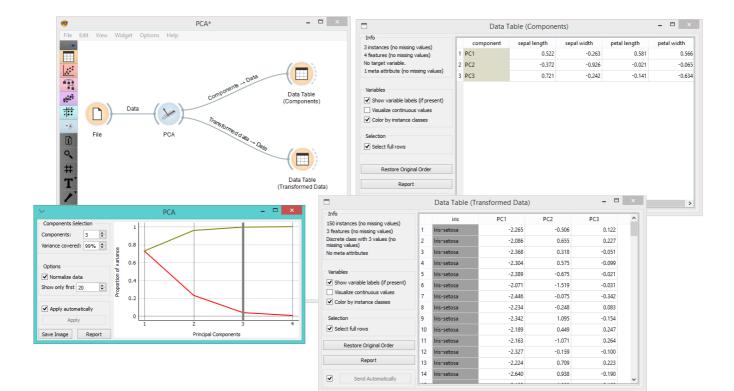
Eigenvectors.

Description

Principal Component Analysis (PCA) computes the PCA linear transformation of the input data. It outputs either a transformed data set with weights of individual instances or weights of principal components.


- 1. Select how many principal components you wish in your output. It is best to choose as few as possible with variance covered as high as possible. You can also set how much variance you wish to cover with your principal components.
- 2. You can normalize data to adjust the values to common scale.
- 3. When *Apply Automatically* is ticked, the widget will automatically communicate all changes. Alternatively, click *Apply*.
- 4. Press Save Image if you want to save the created image to your computer.

- 5. Produce a report.
- 6. Principal components graph, where the red (lower) line is the variance covered per component and the green (upper) line is cumulative variance covered by components.


The number of components of the transformation can be selected either in the *Components Selection* input box or by dragging the vertical cutoff line in the graph.

Examples

PCA can be used to simplify visualizations of large data sets. Below, we used the *Iris* data set to show how we can improve the visualization of the data set with PCA. The transformed data in the <u>Scatter Plot</u> show a much clearer distinction between classes than the default settings.

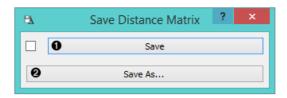
The widget provides two outputs: transformed data and principal components. Transformed data are weights for individual instances in the new coordinate system, while components are the system descriptors (weights for princial components). When fed into the <u>Data Table</u>, we can see both outputs in numerical form. We used two data tables in order to provide a more clean visualization of the workflow, but you can also choose to edit the links in such a way that you display the data in just one data table. You only need to create two links and connect the *Transformed data* and *Components* inputs to the *Data* output.

Save Distance Matrix

Saves a distance matrix.

Signals

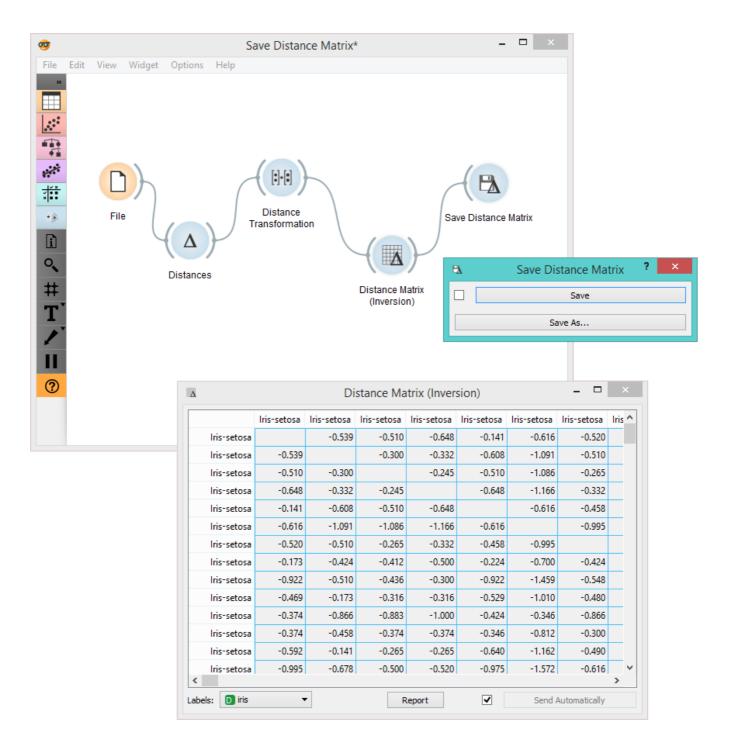
Inputs:


• Distances

A distance matrix.

Outputs:

• None


Description

- 1. By clicking *Save*, you choose from previously saved distance matrices. Alternatively, tick the box on the left side of the *Save* button and changes will be communicated automatically.
- 2. By clicking *Save as*, you save the distance matrix to your computer, you only need to enter the name of the file and click *Save*. The distance matrix will be saved as type *.dst*.

Example

In the snapshot below, we used the <u>Distance Transformation</u> widget to transform the distances in the *Iris* data set. We then chose to save the transformed version to our computer, so we could use it later on. We decided to output all data instances. You can choose to output just a minor subset of the data matrix. Pairs are marked automatically. If you wish to know what happened to our changed file, go <u>here</u>

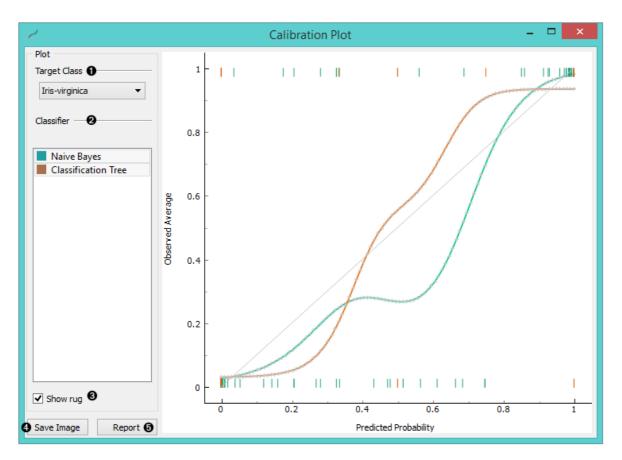
Calibration Plot

Shows the match between classifiers' probability predictions and actual class probabilities.

Signals

Inputs:

• Evaluation Results


Results of testing classification algorithms.

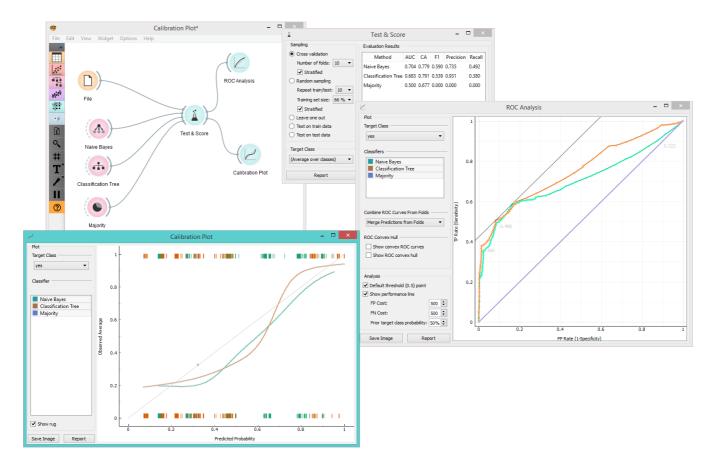
Outputs:

• None

Description

The Calibration Plot plots class probabilities against those predicted by the classifier(s).

- 1. Select the desired target class from the drop down menu.
- 2. Choose which classifiers to plot. The diagonal represents optimal behaviour; the closer the classifier's curve gets, the more accurate its prediction probabilities are. Thus we would use this widget to see whether a classifier is overly optimistic (gives predominantly positive results) or pesimitistic (gives predominantly negative results).
- 3. If *Show rug* is enabled, ticks are displayed at the bottom and the top of the graph, which represent negative and positive examples respectively. Their position corresponds to the classifier's probability prediction and the color shows the classifier. At the bottom of the graph, the points to the left are those which are (correctly) assigned a low probability of the target class, and those to the right are incorrectly assigned high probabilities. At the top of


the graph, the instances to the right are correctly assigned high probabilities and vice versa.

- 4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.
- 5. Produce a report.

Example

At the moment, the only widget which gives the right type of signal needed by the **Calibration Plot** is <u>Test&Score</u>. The Calibration Plot will hence always follow Test&Score and, since it has no outputs, no other widgets follow it.

Here is a typical example, where we compare three classifiers (namely <u>Naive Bayes</u>, <u>Tree</u> and <u>Constant</u>) and input them into <u>Test&Score</u>. We used the *Titanic* data set. Test&Score then displays evaluation results for each classifier. Then we draw **Calibration Plot** and <u>ROC Analysis</u> widgets from Test&Score to further analyze the performance of classifiers. **Calibration Plot** enables you to see prediction accuracy of class probabilities in a plot.

Confusion Matrix

Shows proportions between the predicted and actual class.

Signals

Inputs:

• Evaluation results

Results of testing the algorithms; typically from Test Learners

Outputs:

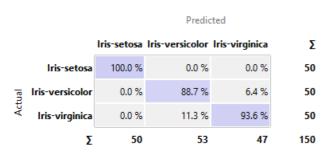
Selected Data

A data subset from the selected cells in the confusion matrix.

Description

The <u>Confusion Matrix</u> gives the number/proportion of instances between the predicted and actual class. The selection of the elements in the matrix feeds the corresponding instances into the output signal. This way, one can observe which specific instances were misclassified and how.

The widget usually gets the evaluation results from Test & Score; an example of the schema is shown below.

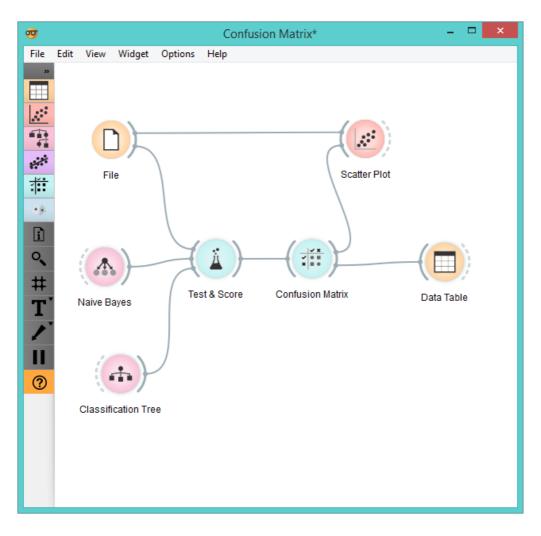

-fil		Confusio	n Matrix			- 🗆 🗙
Learners ① Naive Bayes				Predio	ted	
Classification Tree			Iris-setosa	Iris-versicolor	lris-virginica	Σ
		Iris-setosa	50	0	0	50
	l len	Iris-versicolor	0	47	3	50
	Actual	lris-virginica	0	5	45	50
Show 2 Number of instances		Σ	50	52	48	150
Select 🔞						
Select Correct						
Select Misclassified						
Clear Selection						
Output 4						
✓ Predictions						
Probabilities						
Send Automatically						
Report						

1. When evaluation results contain data on multiple learning algorithms, we have to choose one in the *Learners* box.

The snapshot shows the confusion matrix for Tree and Naive Bayesian models trained and tested on the iris data. The

righthand side of the widget contains the matrix for the naive Bayesian model (since this model is selected on the left). Each row corresponds to a correct class, while columns represent the predicted classes. For instance, four instances of *Iris-versicolor* were misclassified as *Iris-virginica*. The rightmost column gives the number of instances from each class (there are 50 irises of each of the three classes) and the bottom row gives the number of instances classified into each class (e.g., 48 instances were classified into virginica).

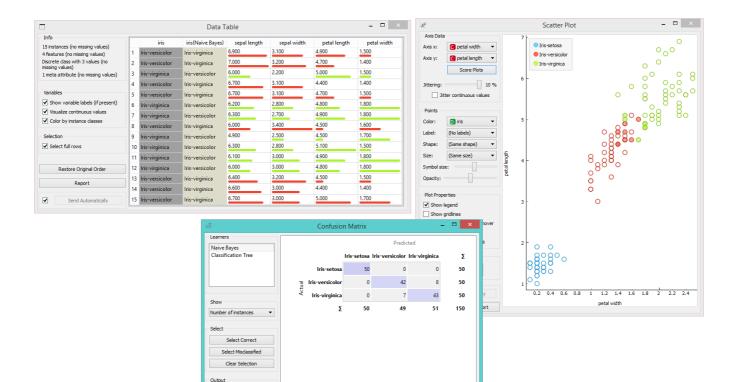
- 2. In Show, we select what data we would like to see in the matrix.
 - Number of instances shows correctly and incorrectly classified instances numerically.
 - **Proportions of predicted** shows how many instances classified as, say, *Iris-versicolor* are in which true class; in the table we can read the 0% of them are actually setosae, 88.5% of those classified as versicolor are versicolors, and 7.7% are virginicae.
 - **Proportions of actual** shows the opposite relation: of all true versicolors, 92% were classified as versicolors and 8% as virginicae.


- 3. In *Select*, you can choose the desired output.
 - Correct sends all correctly classified instances to the output by selecting the diagonal of the matrix.
 - **Misclassified** selects the misclassified instances.
 - **None** annuls the selection.

As mentioned before, one can also select individual cells of the table to select specific kinds of misclassified instances (e.g. the versicolors classified as virginicae).

- 4. When sending selected instances, the widget can add new attributes, such as predicted classes or their probabilities, if the corresponding options *Predictions* and/or *Probabilities* are checked.
- 5. The widget outputs every change if *Send Automatically* is ticked. If not, the user will need to click *Send Selected* to commit the changes.
- 6. Produce a report.

Example


The following workflow demonstrates what this widget can be used for.

<u>Test & Score</u> gets the data from <u>File</u> and two learning algorithms from <u>Naive Bayes</u> and <u>Tree</u>. It performs cross-validation or some other train-and-test procedures to get class predictions by both algorithms for all (or some) data instances. The test results are fed into the **Confusion Matrix**, where we can observe how many instances were misclassified and in which way.

In the output, we used <u>Data Table</u> to show the instances we selected in the confusion matrix. If we, for instance, click *Misclassified*, the table will contain all instances which were misclassified by the selected method.

The <u>Scatterplot</u> gets two sets of data. From the <u>File</u> widget it gets the complete data, while the confusion matrix sends only the selected data, misclassifications for instance. The scatter plot will show all the data, with bold symbols representing the selected data.

Probabilities Send Automatically

Predictions

Report

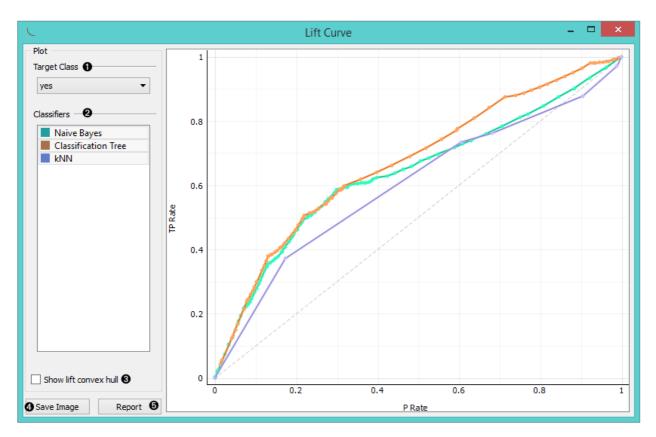
Lift Curve

Measures the performance of a chosen classifier against a random classifier.

Signals

Inputs:

• Evaluation Results


Results of classifiers' tests on data.

Outputs:

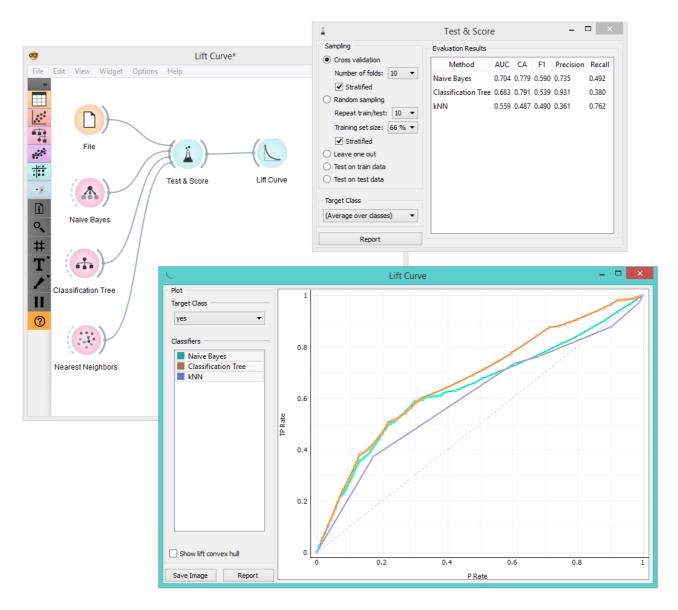
• None

Description

The **Lift curve** shows the relation between the number of instances which were predicted positive and those that are indeed positive and thus measures the performance of a chosen classifier against a random classifier. The graph is constructed with the cumulative number of cases (in descending order of probability) on the x-axis and the cumulative number of true positives on the y-axis. Lift curve is often used in segmenting the population, e.g., plotting the number of responding customers against the number of all customers contacted. You can also determine the optimal classifier and its threshold from the graph.

- 1. Choose the desired *Target class*. The default class is chosen alphabetically.
- 2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted. Click on a classifier to select or deselect the curve.
- 3. *Show lift convex hull* plots a convex hull over lift curves for all classifiers (yellow curve). The curve shows the optimal classifier (or combination thereof) for each desired TP/P rate.
- 4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

- 5. Produce a report.
- 6. 2-D pane with **P rate** (population) as x-axis and **TP rate** (true positives) as a y-axis. The diagonal line represents the behaviour of a random classifier. Click and drag to move the pane and scroll in or out to zoom. Click on the "*A*" sign at the bottom left corner to realign the pane.


Note:

The perfect classifier would have a steep slope towards 1 until all classes are guessed correctly and then run straight along 1 on y-axis to (1,1).

Example

At the moment, the only widget which gives the right type of the signal needed by the Lift Curve is Test&Score.

In the example below, we try to see the prediction quality for the class 'survived' on the *Titanic* data set. We compared three different classifiers in the Test Learners widget and sent them to Lift Curve to see their performance against a random model. We see the <u>Tree</u> classifier is the best out of the three, since it best aligns with *lift convex hull*. We also see that its performance is the best for the first 30% of the population (in order of descending probability), which we can set as the threshold for optimal classification.

References

Handouts of the University of Notre Dame on Data Mining - Lift Curve. Available here.

Predictions

Shows models' predictions on the data.

Signals

Inputs

• Data

A data set.

• Predictors

Predictors to be used on the data.

Outputs

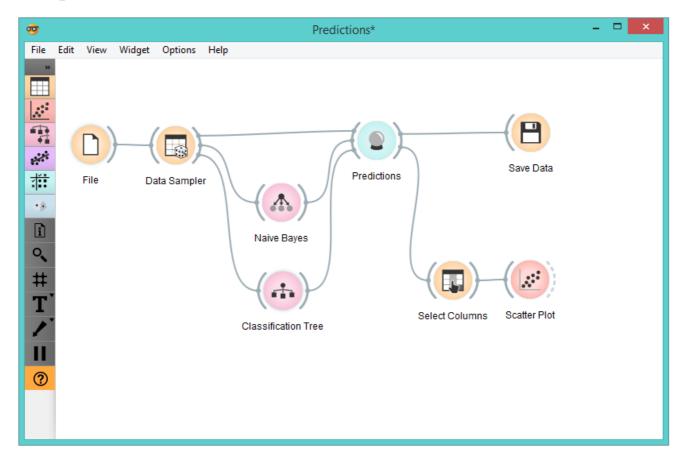
• Predictions

Original data with added predictions.

Description

2				Prediction	5				>
Info 🕕		Classification Tree	Naive Bayes	6 iris	sepal length	sepal width	petal length	petal width	
Data: 45 instances. Predictors: 2	1	lris-setosa	lris-setosa	lris-setosa	4.600	3.600	1.000	0.200	
Task: Classification	2	Iris-versicolor	Iris-versicolor	lris-versicolor	4.900	2.400	3.300	1.000	
Restore Original Order	3	lris-versicolor	Iris-versicolor	lris-versicolor	5.700	2.800	4.100	1.300	
Options (classification)	4	lris-setosa	lris-setosa	lris-setosa	5.400	3.700	1.500	0.200	
Show predicted class	5	lris-versicolor	lris-versicolor	lris-versicolor	6.600	3.000	4.400	1.400	
	6	Iris-versicolor	lris-versicolor	lris-virginica	4.900	2.500	4.500	1.700	
Show predicted probabilities	7	Iris-versicolor	Iris-versicolor	Iris-versicolor	5.500	2.500	4.000	1.300	
Iris-setosa Iris-versicolor	8	lris-virginica	lris-virginica	lris-virginica	5.700	2.500	5.000	2.000	
Iris-virginica	9	lris-setosa	lris-setosa	lris-setosa	4.600	3.100	1.500	0.200	
	10	Iris-versicolor	Iris-versicolor	lris-versicolor	5.600	3.000	4.100	1.300	
	11	lris-setosa	lris-setosa	lris-setosa	4.800	3.000	1.400	0.300	
Draw distribution bars	12	lris-virginica	lris-virginica	lris-virginica	6.700	3.300	5.700	2.100	
	13	lris-virginica	lris-virginica	lris-virginica	7.600	3.000	6.600	2.100	
Data View 🚯	14	lris-setosa	lris-setosa	lris-setosa	4.500	2.300	1.300	0.300	
Show full data set	15	lris-setosa	lris-setosa	lris-setosa	5.000	3.300	1.400	0.200	
Output	16	lris-versicolor	lris-virginica	lris-virginica	7.200	3.000	5.800	1.600	
 Original data 	17	lris-virginica	Iris-versicolor	lris-virginica	6.300	2.700	4.900	1.800	
✓ Predictions	18	lris-virginica	lris-virginica	lris-virginica	5.800	2.700	5.100	1.900	
✓ Probabilities	19	lris-setosa	lris-setosa	lris-setosa	5.100	3.300	1.700	0.500	
	20	lris-virginica	lris-virginica	lris-virginica	6.700	3.100	5.600	2.400	

The widget receives a data set and one or more predictors (classifiers, not learning algorithms - see the example below). It outputs the data and the predictions.


- 1. Information on the input
- 2. The user can select the options for classification. If *Show predicted class* is ticked, the appended data table provides information on predicted class. If *Show predicted probabilities* is ticked, the appended data table provides information on probabilities predicted by the classifiers. The user can also select the predicted class he or she

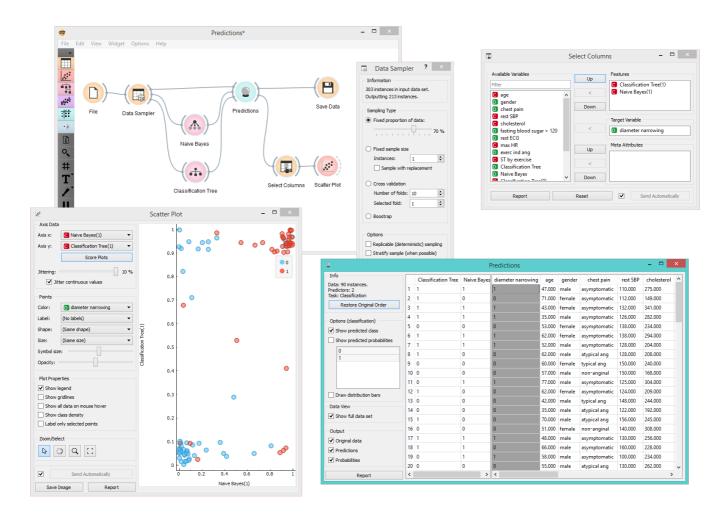
wants displayed in the appended data table. The option *Draw distribution bars* provides a nice visualization of the predictions.

- 3. By ticking the *Show full data set*, the user can append the entire data table to the *Predictions* widget.
- 4. Select the desired output.
- 5. The appended data table
- 6. Produce a report.

Despite its simplicity, the widget allows for quite an interesting analysis of decisions of <u>predictive models</u>; there is a simple demonstration at the bottom of the page. <u>Confusion Matrix</u> is a related widget and although many things can be done with any of them, there are tasks for which one of them might be much more convenient than the other. The output of the widget is another data set, where predictions are appended as new meta attributes. You can select which features you wish to output (original data, predictions, probabilities). The resulting data set can be appended to the widget, but you can still choose to display it in a separate data table.

Example

We randomly split the *heart-disease* data into two subsets. The larger subset, containing 70 % of data instances, is sent to <u>Naive Bayes</u> and <u>Tree</u>, so they can produce the corresponding model. Models are then sent into **Predictions**, among with the remaining 30 % of the data. Predictions shows how these examples are classified.


To save the predictions, we simply attach the <u>Save</u> widget to **Predictions**. The final file is a data table and can be saved as in a .tab or .tsv format.

Finally, we can analyze the models' predictions. For that, we first take <u>Select Columns</u> with which we move the meta attributes with probability predictions to features. The transformed data is then given to the <u>Scatterplot</u>, which we set to use the attributes with probabilities as the x and y axes, while the class is (already by default) used to color the data points.

To get the above plot, we selected *Jitter continuous values*, since the decision tree gives just a few distinct probabilities. The blue points in the bottom left corner represent the people with no diameter narrowing, which were correctly classified by both models. The upper right red points represent the patients with narrowed vessels, which were correctly classified by both.

Note that this analysis is done on a rather small sample, so these conclusions may be ungrounded. Here is the entire workflow:

Another example of using this widget is given in the documentation for the widget Confusion Matrix.

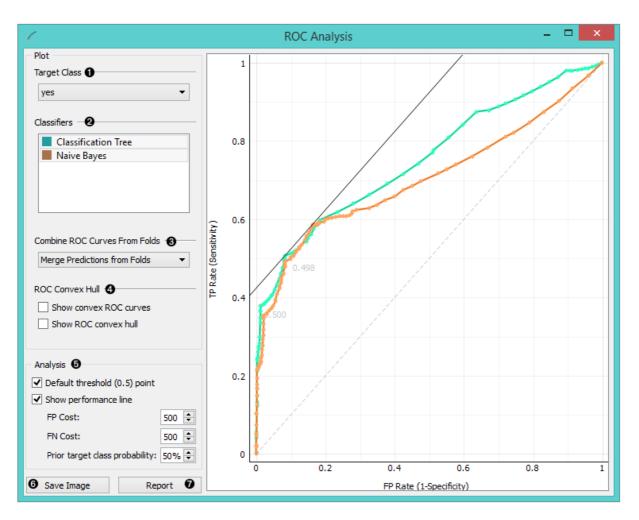
ROC Analysis

Plots a true positive rate against a false positive rate of a test.

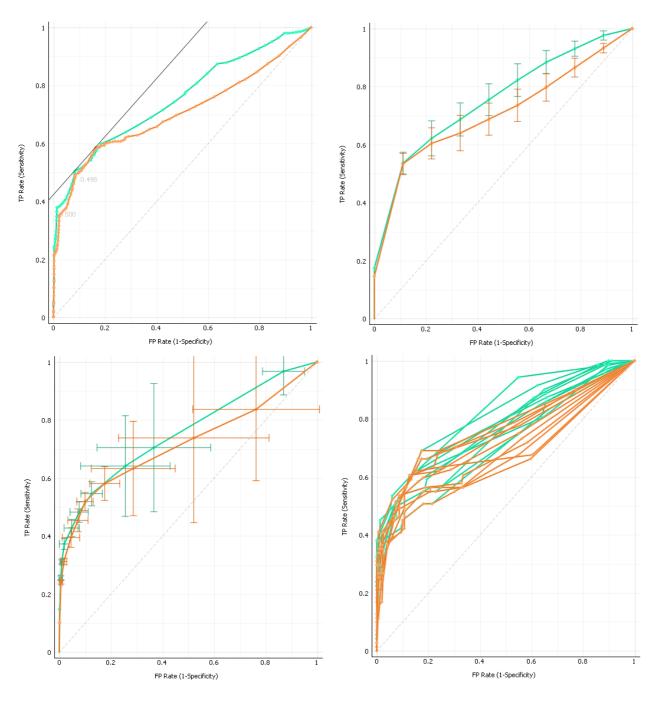
Signals

Inputs:

• Evaluation Results

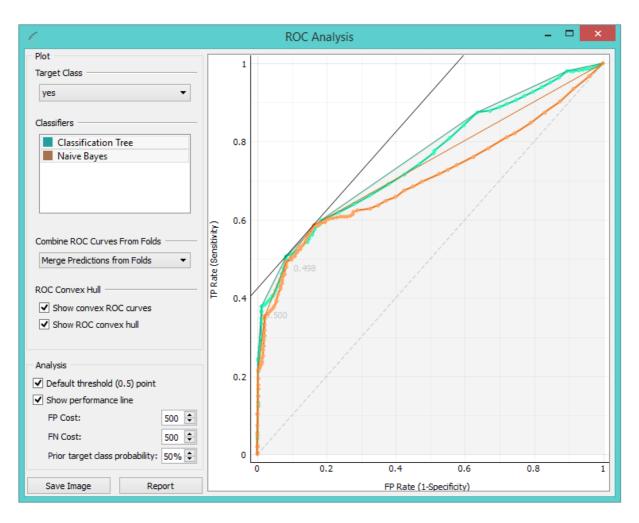

Results of classifiers' tests on data

Outputs:


• None

Description

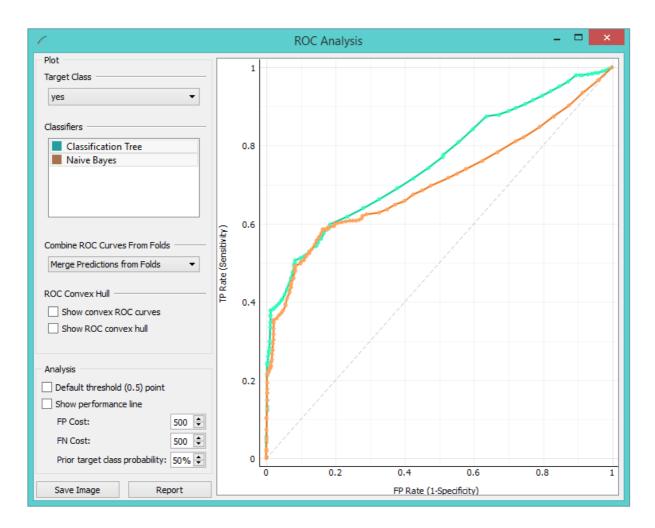
The widget shows ROC curves for the tested models and the corresponding convex hull. It serves as a mean of comparison between classification models. The curve plots a false positive rate on an x-axis (1-specificity; probability that target=1 when true value=0) against a true positive rate on a y-axis (sensitivity; probability that target=1 when true value=1). The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the classifier. Given the costs of false positives and false negatives, the widget can also determine the optimal classifier and threshold.


- 1. Choose the desired Target Class. The default class is chosen alphabetically.
- 2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted. Click on a classifier to select or deselect it.
- 3. When the data comes from multiple iterations of training and testing, such as k-fold cross validation, the results can be (and usually are) averaged.

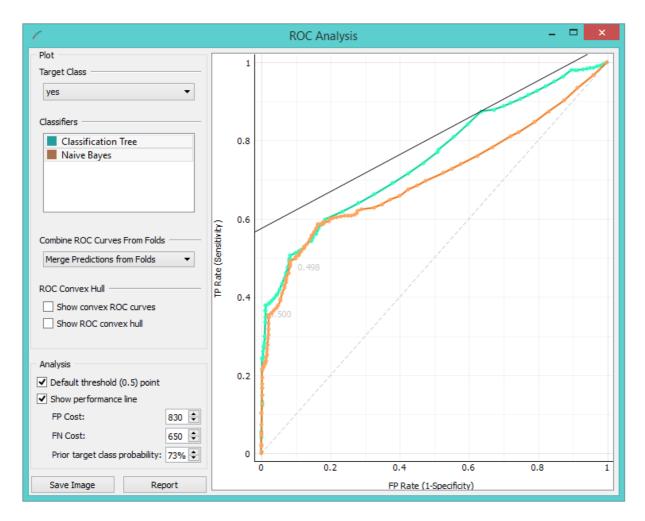
The averaging options are:

- **Merge predictions from folds** (top left), which treats all the test data as if they came from a single iteration
- Mean TP rate (top right) averages the curves vertically, showing the corresponding confidence intervals
- **Mean TP and FP at threshold** (bottom left) traverses over threshold, averages the positions of curves and shows horizontal and vertical confidence intervals
- Show individual curves (bottom right) does not average but prints all the curves instead
- 4. Option *Show convex ROC curves* refers to convex curves over each individual classifier (the thin lines positioned over curves). *Show ROC convex hull* plots a convex hull combining all classifiers (the gray area below the curves). Plotting both types of convex curves makes sense since selecting a threshold in a concave part of the curve cannot

yield optimal results, disregarding the cost matrix. Besides, it is possible to reach any point on the convex curve by combining the classifiers represented by the points on the border of the concave region.


The diagonal dotted line represents the behaviour of a random classifier. The full diagonal line represents isoperformance. A black "*A*" symbol at the bottom of the graph proportionally readjusts the graph.

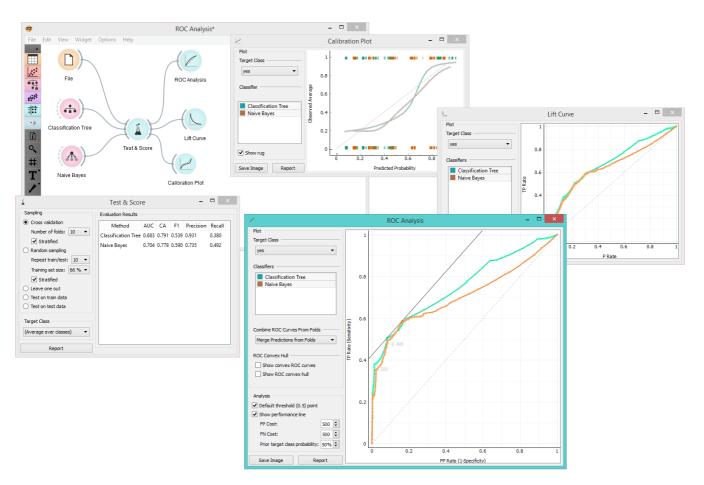
5. The final box is dedicated to the analysis of the curve. The user can specify the cost of false positives (FP) and false negatives (FN), and the prior target class probability.


Default threshold (0.5) point shows the point on the ROC curve achieved by the classifier if it predicts the target class if its probability equals or exceeds 0.5.

Show performance line shows iso-performance in the ROC space so that all the points on the line give the same profit/loss. The line further to the upper left is better than the one down and right. The direction of the line depends upon costs and probabilities. This gives a recipe for depicting the optimal threshold for the given costs: this is the point where the tangent with the given inclination touches the curve and it is marked in the plot. If we push the iso-performance higher or more to the left, the points on the iso-performance line cannot be reached by the learner. Going down or to the right, decreases the performance.

The widget allows setting the costs from 1 to 1000. Units are not important, as are not the magnitudes. What matters is the relation between the two costs, so setting them to 100 and 200 will give the same result as 400 and 800.

Defaults: both costs equal (500), Prior target class probability 50% (from the data).



False positive cost: 830, False negative cost 650, Prior target class probability 73%.

- 6. Press Save Image if you want to save the created image to your computer in a .svg or .png format.
- 7. Produce a report.

Example

At the moment, the only widget which gives the right type of signal needed by the **ROC Analysis** is <u>Test&Score</u>. Below, we compare two classifiers, namely <u>Tree</u> and <u>Naive Bayes</u>, in **Test&Score** and then compare their performance in **ROC Analysis**, <u>Life Curve</u> and <u>Calibration Plot</u>.

Test & Score

Tests learning algorithms on data.

Signals

Inputs

• Data

Data for training and, if there is no separate test data set, also testing.

• Test Data

Separate data for testing.

• Learner

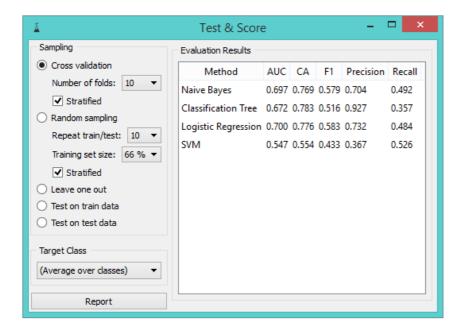
One or more learning algorithms.

Outputs

• Evaluation results

Results of testing the algorithms.

Description


The widget tests learning algorithms. Different sampling schemes are available, including using separate test data. The widget does two things. First, it shows a table with different classifier performance measures, such as <u>classifica-tion accuracy</u> and <u>area under the curve</u>. Second, it outputs evaluation results, which can be used by other widgets for analyzing the performance of classifiers, such as <u>ROC Analysis</u> or <u>Confusion Matrix</u>.

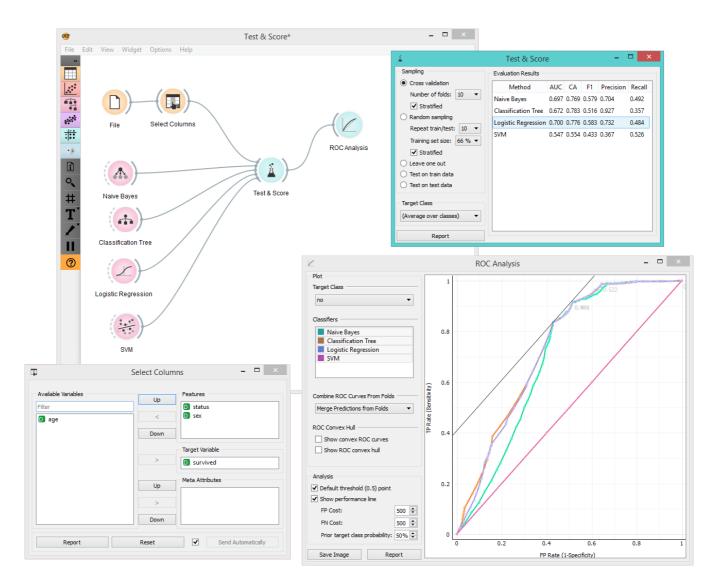
The *Learner* signal has an uncommon property: it can be connected to more than one widget to test multiple learners with the same procedures.

1	Test & Score	е			-	×
Sampling	Evaluation Results)				
Cross validation	Method	AUC	CA	F1	Precision	Recall
Number of folds: 10 🔻	Naive Bayes	0.697	0.769	0.579	0.704	0.492
Stratified	Classification Tree	0.672	0.783	0.516	0.927	0.357
Random sampling	Logistic Regression	0.700	0.776	0.583	0.732	0.484
Repeat train/test: 10 Training set size: 66 % Stratified Leave one out Test on train data Test on test data Target Class	SVM				0.367	0.526
(Average over classes) 🔻						
8 Report						

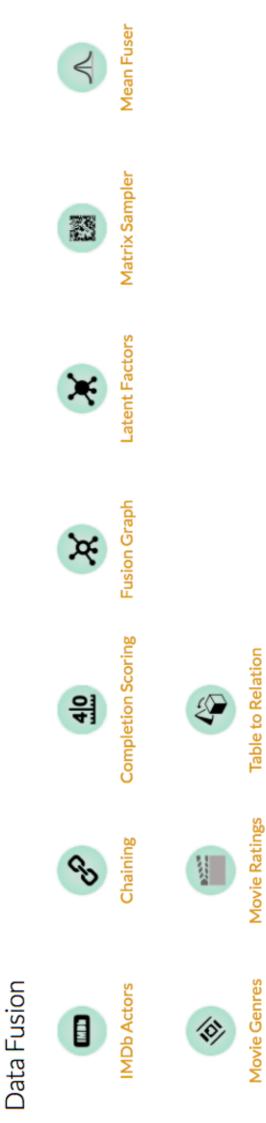
- 1. The widget supports various sampling methods.
 - <u>Cross-validation</u> splits the data into a given number of folds (usually 5 or 10). The algorithm is tested by holding out examples from one fold at a time; the model is induced from other folds and examples from the held out fold are classified. This is repeated for all the folds.
 - **Leave-one-out** is similar, but it holds out one instance at a time, inducing the model from all others and then classifying the held out instances. This method is obviously very stable, reliable ... and very slow.
 - **Random sampling** randomly splits the data into the training and testing set in the given proportion (e.g. 70:30); the whole procedure is repeated for a specified number of times.
 - **Test on train data** uses the whole data set for training and then for testing. This method practically always gives wrong results.
 - **Test on test data**: the above methods use the data from *Data* signal only. To input another data set with testing examples (for instance from another file or some data selected in another widget), we select *Separate Test Data* signal in the communication channel and select Test on test data.
- 2. Only *Test on test data* requires a target class, e.g. having the disease or being of subvariety *Iris setosa*. When *Target class* is (None), the methods return the average value. Target class can be selected at the bottom of the widget.
- 3. Produce a report.
- 4. The widget will compute a number of performance statistics:

Classification

- Area under ROC is the area under the receiver-operating curve.
- Classification accuracy is the proportion of correctly classified examples.
- F-1 is a weighted harmonic mean of precision and recall (see below).
- <u>Precision</u> is the proportion of true positives among instances classified as positive, e.g. the proportion of *Iris virginica* correctly identified as Iris virginica.
- <u>Recall</u> is the proportion of true positives among all positive instances in the data, e.g. the number of sick among all diagnosed as sick.


Regression

ă.	Test & Score			- (×
Sampling	Evaluation Results				
Cross validation	Method	MSE	RMSE	MAE	R2
Number of folds: 10 Stratified	Mean Learner	84.644	9.200	6.662	-0.003
Random sampling	Nearest Neighbors	38.676	6.219	4.352	0.542
Repeat train/test: 10 -	SVM Regression	66.314	8.143	5.141	0.214
Training set size: 66 % 🔻	SGD Regression	24.297	4.929	3.296	0.712
✓ Stratified					
○ Leave one out					
 Test on train data 					
 Test on test data 					
Report					


- <u>MSE</u> measures the average of the squares of the errors or deviations (the difference between the estimator and what is estimated).
- <u>RMSE</u> is the square root of the arithmetic mean of the squares of a set of numbers (a measure of imperfection of the fit of the estimator to the data)
- MAE is used to measure how close forecasts or predictions are to eventual outcomes.
- **R2** is interpreted as the proportion of the variance in the dependent variable that is predictable from the independent variable.

Example

In a typical use of the widget, we give it a data set and a few learning algorithms and we observe their performance in the table inside the **Test & Score** widget and in the **ROC**. The data is often preprocessed before testing; in this case we did some manual feature selection (<u>Select Columns</u> widget) on *Titanic* data set, where we want to know only the sex and status of the survived and omit the age.

Another example of using this widget is presented in the documentation for the Confusion Matrix widget.

Chaining

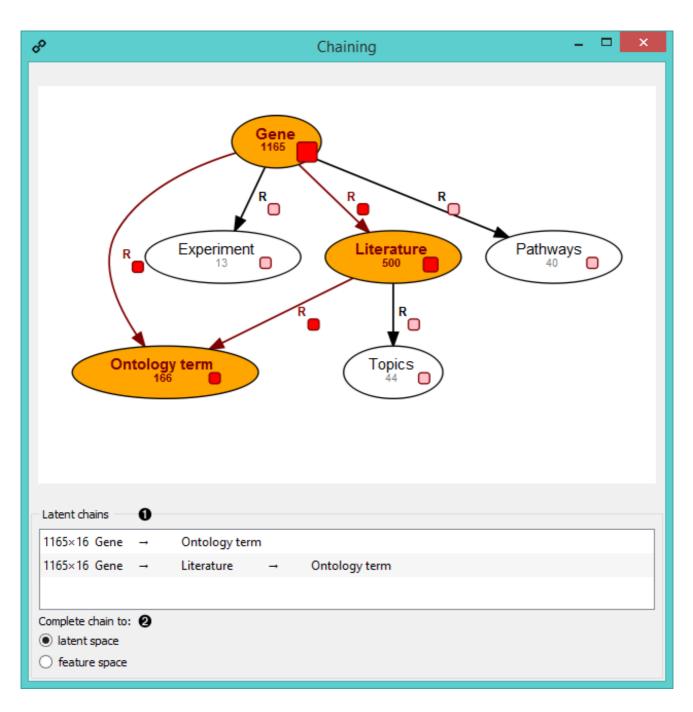
Profiles objects of one type in the latent space of another object type through chaining of latent matrices along paths in a data fusion graph.

Signals

Inputs:

• Fitted Fusion Graph

Fitted collective latent data model.


Outputs:

Relation

Relationships between two groups of objects.

Description

Chaining constructs data profiles of objects of one type that are expressed in the latent space of another object type. This is done by appropriately multiplying the latent matrices along paths that connect start and end nodes in the fusion graph. The widget displays a fitted fusion graph on the right, where you can select the start and end node (object type) that are then used in chaining.

- 1. The widget displays all chains that connect selected start node with the selected end node (in orange). Click on the chain you wish to output.
- 2. Select what type of chain you wish to output:
 - latent space (widget outputs data profiles in the latent space)
 - feature space (widget outputs data profiles in the original domain space)

Example

This widget is great for constructing profiles that relate objects, which are not directly connected in a fusion graph. In the example below we have three data sets: annotations of genes from the Gene Ontology, literature on genes and literature on ontology terms. We use **Chaining** to see how genes relate to ontology terms.

io oject types slations											
lations		Gene 1165									
65×166 Gene → Ontology te	m										
		R	rature	: View Widget	Optio	ns Help	uata-	fusion*			
		Ontology term		Gene Ontolo) gy	Table to Relat	tion				
name composition algorithm Matrix tri-factorization				Gene Literate	ure	Table to Relat	tion F	usion Graph	Chaining D	ata Table	
Matrix tri-completion					\						
	Chaining	- • ×)—	-(42)	\mathcal{V}				
	Chaining	- • ×		Literature Onto	blogy	Table to Rela	tion				
o ^p (- • ×	_	Literature Onto	blogy	Table to Rela				- 0	×
8 () ()	Chaining	- • ×	Info	Literature Onto	ology		Data Table				_
¢ (X	Info 1165 instances (no	o missing values)		12	Data Table	14	15	Gene	×
e (- • ×	Info 1165 instances (no 16 features (no mi	o missing values) issing values)	1	12 0.009	Data Table 13 0.001	0.014	-0.007	Gene YHR099W	_
φ (R	- • ×	Info 1165 instances (no	o missing values) issing values)	1 2	12 0.009 0.002	Data Table	0.014	-0.007 -0.002	Gene YHR099W YLR321C	_
e (-	Info 1165 instances (no 16 features (no mis No target variable. 1 meta attribute (n	o missing values) issing values) no missing values)	1 2 3	12 0.009 0.002 -0.002	Data Table 13 0.001 0.002 0.001	0.014 0.001 -0.004	-0.007 -0.002 0.003	Gene YHR099W YLR321C YOR119C	_
φ (R	- • ×	Info 1165 instances (no 16 features (no mis No target variable. 1 meta attribute (n	o missing values) issing values)	1 2	12 0.009 0.002 -0.002 -0.002	Data Table 13 0.001 0.002	0.014 0.001 -0.004 -0.001	-0.007 -0.002	Gene YHR099W YLR321C YOR119C YCR044C	_
₽ ()	R	- • ×	Info 1165 instances (no 16 features (no mis No target variable. 1 meta attribute (n	o missing values) issing values) no missing values)	1 2 3 4	12 0.009 0.002 -0.002	Data Table 13 0.001 0.002 0.001 -0.001	0.014 0.001 -0.004	-0.007 -0.002 0.003 0.000	Gene YHR099W YLR321C YOR119C	_
\$ ()	R		Info 1165 instances (no 16 features (no mir No target variable. 1 meta attribute (n Restore Or	o missing values) ssing values) no missing values) riginal Order	1 2 3 4 5	12 0.009 0.002 -0.002 -0.002 -0.004	Data Table 13 0.001 0.002 0.001 -0.001 -0.001	0.014 0.001 -0.004 -0.001 -0.006	-0.007 -0.002 0.003 0.000 0.000	Gene YHR099W YLR321C YOR119C YCR044C YPL226W	_
¢P () Ge 11 R	R Literature 500		Info Info Info Info Info Info Info Info	o missing values) no missing values) niginal Order labels (if present) nuous values	1 2 3 4 5 6	12 0.009 0.002 -0.002 -0.002 -0.004 -0.001	Data Table 13 0.001 0.002 0.001 -0.001 -0.001 0.000	0.014 0.001 -0.004 -0.001 -0.006 -0.004	-0.007 -0.002 0.003 0.000 0.002 0.002	Gene YHR099W YLR321C YOR119C YCR044C YPL226W YPL020C	_
P (R	- • ×	Info 1165 instances (no 16 features (no m 16 features (no m 16 target variable. 1 meta attribute (n Restore Or Variables Variables Variables Vaniable contin Color by instan	o missing values) no missing values) miginal Order labels (if present) uous values nce classes	1 2 3 4 5 6 7	12 0.009 0.002 -0.002 -0.002 -0.004 -0.001 0.000	Data Table 13 0.001 0.002 0.001 -0.001 -0.001 0.000 -0.000	0.014 0.001 -0.004 -0.001 -0.006 -0.004 0.001	-0.007 -0.002 0.003 0.000 0.002 0.003 0.003 0.000	Gene VHR099W VLR321C VOR119C VCR044C VPL226W VPL020C VNL180C	_
P (R Literature 500		Info 1165 instances (no 16 features (no m 16 features (no m 16 target variable. 1 meta attribute (n Restore Or Variables Variables Variables Vaniable contin Color by instan	o missing values) no missing values) niginal Order labels (if present) nuous values	1 2 3 4 5 6 7 8	12 0.009 0.002 -0.002 -0.002 -0.004 -0.001 0.000 0.001	Data Table 13 0.001 0.002 0.001 -0.001 -0.001 -0.001 0.000 -0.000 0.000	0.014 0.001 -0.004 -0.006 -0.006 -0.004 0.001 0.001	-0.007 -0.002 0.003 0.000 0.002 0.003 0.003 0.000 -0.000	Gene VHR099W VLR321C VOR119C VCR044C VPL226W VPL020C VNL180C VDR081C	_
P (R Literature 500	- • ×	Info I165 instances (no I6 features (no mi No target variable. I meta attribute (n Restore Or Variables Variables Variables Color by instan Set of	o missing values) no missing values) miginal Order labels (if present) uous values nce classes	1 2 3 4 5 6 7 8 9	12 0.009 0.002 -0.002 -0.004 -0.001 0.000 0.001 -0.002	Data Table 13 0.001 0.002 0.001 -0.001 -0.000 -0.000 0.000 0.000 0.000 0.002	0.014 0.001 -0.004 -0.005 -0.004 0.001 0.001 0.001 -0.005	-0.007 -0.002 0.003 0.000 0.002 0.003 0.000 -0.000 0.003	Gene VHR099W VLR321C VOR119C VCR044C VPL226W VPL020C VNL180C VDR081C VBR086C	_
P (R Literature 500		Info 1165 Instances (no 16 Features (no mi 16 Features (no mi 16 Eaguer variable. 1 meta attribute (n Restore Or Variables Variables Variables Variables Color by instan Set of Selection	o missing values) sising values) - no missing values) - riginal Order labels (if present) rucus values cie classes coloris	1 2 3 4 5 6 7 8 9 10	12 0.009 0.002 -0.002 -0.004 -0.004 -0.004 0.000 0.000 0.000 -0.002 -0.002 -0.008	Data Table 13 0.001 0.002 0.001 -0.001 -0.000 -0.000 0.000 0.002 -0.001	0.014 0.001 -0.004 -0.001 -0.006 -0.004 0.001 0.001 -0.005 -0.011	-0.007 -0.002 0.003 0.000 0.002 0.003 0.000 -0.000 0.003 0.000	Gene YHR099W YLR321C YOR119C YCR044C YPL226W YPL020C YNL180C YDR081C YBR086C YOR297C	_
P (Literature 500 R R R gy term		Info I165 instances (no I6 features (no mi No target variable. I meta attribute (n Restore Or Variables Variables Variables Color by instan Set of	o missing values) sising values) - no missing values) - riginal Order labels (if present) rucus values cie classes coloris	1 2 3 4 5 6 7 8 9 10 11	12 0.009 0.002 -0.002 -0.004 -0.001 0.000 -0.001 -0.000 -0.001 -0.000 -0.000	Data Table 13 0.001 0.002 0.001 -0.001 -0.001 -0.000 0.000 0.002 -0.001 0.000 0.000 0.002 -0.004 0.000	0.014 0.001 -0.004 -0.001 -0.006 -0.004 0.001 0.001 0.001 -0.005 -0.011 -0.000	-0.007 -0.002 0.003 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000	Gene YHR099W YLR321C YOR119C YCR044C YPL226W YPL020C YDR081C YDR081C YBR086C YOR297C YER027C	_
Contoioo Tif5x-16 Gene - Ontoio	Bree R Literature 500 R gy term		Info I165 Instances (no I6 features (no mi No target variable. I meta attribute (n Restore Or Variables Variables Or Usualize contin Color by instan Set or Selection Select full rows	o missing values) no missing values) niginal Order labels (if present) nuous values nce classes coolors	1 2 3 4 5 6 6 7 8 9 9 10 111 12 13	12 0.009 0.002 -0.002 -0.004 -0.001 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002	Data Table 13 0.001 0.002 0.001 -0.001 -0.001 -0.000 -0.000 0.002 -0.001 0.000 0.002 -0.004 0.000 -0.004 0.000	0.014 0.001 -0.004 -0.001 -0.006 -0.004 0.001 0.001 0.001 -0.005 -0.011 -0.000 -0.001	-0.007 -0.002 0.003 0.000 0.002 0.003 0.000 -0.000 0.003 0.000 0.001 0.000	Gene YHR099W YLR321C YOR119C YCR044C YPL226W YPL020C YNL180C YDR081C YBR086C YOR297C YER027C YPR159W	*
P (Bree R Literature 500 R gy term		Info I165 Instances (no 16 Features (no mi No target variable. I meta attribute (n Restore Or Variables Show variable I Vaualize contin Color by instan Set co Selection Select full rows	o missing values) sising values) - no missing values) - riginal Order labels (if present) rucus values cie classes coloris	1 2 3 4 5 6 7 7 8 9 10 11 12 13	12 0.009 0.002 -0.002 -0.002 -0.004 -0.004 -0.001 0.000 -0.000 -0.000 -0.000 -0.000 -0.000	Data Table 13 0.001 0.001 -0.001 -0.001 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.014 0.001 -0.004 -0.001 -0.006 -0.004 0.001 0.001 -0.005 -0.011 -0.000 -0.001 -0.001 -0.009	-0.007 -0.002 0.003 0.000 0.002 0.003 -0.000 -0.000 0.003 0.000 0.001 0.000 0.000	Gene YHR099W YLR321C YOR119C YCR044C YPL226W YPL020C YNL180C YDR081C YBR08C YOR297C YER027C YR159W YIL016W	_

🖉 v: latest 🗸

Completion Scoring

Scores the quality of matrix completion using root mean squared error (RSME) metric.

Signals

Inputs:

• Fitted fusion graph

Fitted collective latent data model.

Relation

Relationships between two groups of objects.

Outputs:

• (None)

Description

This widget assesses the quality of matrix completion based on root mean squared error metric (RMSE). Each row contains scores representing matrix completion quality of different relations. Results for prediction models are in columns.

<u>4 0</u>	Completion Scoring 🛛 🗕 🗖 🔷					
Γ	RMSE 1					
		Mean by columns	Movies to Genres			
	[706×427] Users rate Movies	1.05372	1.10527			

1. The RMSE value chart for the input relation matrix.

Example

Completion Scoring widget assesses the quality of matrix completion using the RMSE metric. Connect it with **Matrix Sampler** to score prediction models (previously learnt on in-sample data) on out-of-the-sample data. You can also use **Mean Fuser** to get a mean score for latent values.

×	Fusion Graph – 🗖 🗙	
Info 4 object types 4 relations	(Actors) (Users)	• ×
Relations	RMSE Mean by columns Movies	to Genres
156×156 Actors costar with Actors	play in /rate [706×171] Users rate Movies 1.05400 1.02946	
156×171 Actors play in Movies 171×19 Movies fit in Genres	Movies A Mean Fuser - 🗆 X	
706×171 Users rate Movies		
	Mean fuser Calculate masked values as mean by: All values Genres 19 Mean fuser Calculate masked values as mean by: All values • Output completed relation 706×171 Users rate Movies	
Fuser name		
Users to Movies	🕅 Matrix Sampler 🗕 🗆	
Decomposition algorithm Matrix tri-factorization	Complex method	- 🗆 🗙
Matrix tri-factorization Matrix tri-completion	Rows O Columns Ontions Help	
Initialization algorithm	O Rows and columns O Entries	
Random	Proportion of data in the sample	^
O Random C	90%	
O Random Vcol		
Maximum number of iterations	Apply IMDb Actors	
Factorization rank		
	10% Movie Genres Fusion Graph	
Run after any change	15. (23.53)	
Run		
	Hatrix Samplar	
	Matrix Sampler Completion Scoring	v
		/ v: lat

Fusion Graph

Constructs a data fusion graph and runs collective matrix factorization algorithm.

Signals

Inputs:

Relation

Relationships between two groups of objects.

Outputs:

Relation

Relationships between two groups of objects.

• Fitted Fusion Graph

Fitted collective latent data model.

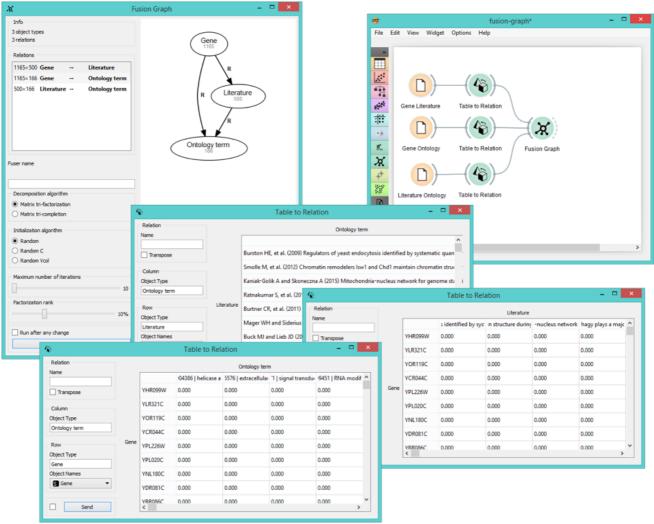
• Fusion Graph

Input data system.

Description

Fusion Graph widget performs data fusion by collective matrix factorization. It fuses multiple related data sets into one comprehensive structure. The widget returns a relational structure of the entire data system estimated by a collective latent factor approach.

ж	Fusion Graph	- 🗆 🗙
Info 2 object types 1 relations	0	Users 706
Relations 706×855 Users rate Movies	2	Movies 855
Fuser name	0	
Decomposition algorithm Matrix tri-factorization Matrix tri-completion	3	
Initialization algorithm Random Random C Random Vcol	Ø	
Maximum number of iterations	6 10	
Factorization rank	0 10%	
Run after any change	0	


- 1. Information on the input (object types are nodes, relations are links between the nodes).
- 2. List of identified relations. Click on the relation to output it.
- 3. Specify a descriptive name for your fusion system.
- 4. Select the algorithm for factorization:
 - **matrix tri-factorization** decomposes each relation matrix into three latent matrices and shares the latent matrices between related data sets. Unknown values are imputed prior to collective factorization.
 - matrix tri-completion works the same as matrix tri-factorization, but does not require re-

lation matrices to be fully observed.

- 5. Select the *initialization algorithm* for matrix factorization.
- 6. Set the maximum number of iterations used for factorization. Default is 10.
- 7. Set the *factorization rank* (the ratio of data compression based on the input data). Default is 10%.
- 8. If *Run after every change* is ticked, the widget will automatically commit changes. Alternatively press *Run*. For large data sets we recommend to commit the changes manually.

Example

The example below shows how to fuse several data sets together. Say we have the data on ontology terms for many genes, literature on ontology terms and literature on genes. To fuse these data together we first use **Table to Relation** widget, where we manually set the object type and relation names. **Fusion Graph** will compile the fusion graph of our three data sets with connections between object types based on previously defined data relations, display the connections and run matrix decomposition algorithm.

v: latest -

IMDb Actors

Constructs a movies-by-actors or actors-by-actors relation matrix.

Signals

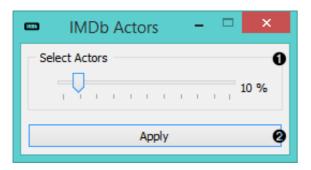
Inputs:

• Filter

Data filter.

Outputs:

Movie Actors


A movies-by-actors relation matrix.

Costarring Actors

An actors-by-actors relation matrix.

Description

This widget gives you the access to the IMDb data sets on actors and movies. It outputs either a movies-by-actors relation matrix, an actors-by-actors relation matrix or both.

- 1. Select how many actors from the IMDb database would you like to consider.
- 2. Click Apply to commit your data.

Example

This simple widget is great for learning how data fusion works since it enables immediate access to the

IMDb database. To use it, you need to connect it to **Movie Ratings** widget in the input and with **Fusion Graph** in the output. This will add the information on actors in relation to movies. You can view this new data in the **Data Table** widget.

Ŕ	Fusion Graph	- 🗆 🗙					
Info 3 object types 3 relations	Users		1				
Relations	706	156					
706×171 Users rate Movies		rate play in					
156×156 Actors costar with Actors							
156×171 Actors play in Movies		Movies 171		data	-fusion*	_	
			View Widget Opti		-iusion-		
			new mager opu				
Fuser name	Select Actors	ctors – 🗆 🗙			Data T	able	
Decomposition algorithm	Y	2 %					
Matrix tri-factorization			BLANK	IMDb Actors		~	
			Bearing				
Matrix tri-completion		Apply				R)	
Matrix tri-completion Initialization algorithm Random Random C		Apply	Movie Ratings	Data Table	Fusion		
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol		Apply	Movie Ratings		Fusion	Graph	
Matrix tri-completion Initialization algorithm Random Random C Random Vcol	Info 156 instance	es (no mission values)	Movie Ratings Words and Pictures (2013)	lf l Stay (2014)	Fusion Fury (2014)	Graph The Prophecy: Forsaken (2005)	Actors
Matrix tri-completion Initialization algorithm Random Random C Random Vcol	Info 156 instance 10 171 features	es (no missing values) s (no missing values) 79	Movie Ratings Words and Pictures (2013) 0.000	lf I Stay (2014) 0.000	Fusion Fury (2014) 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya
Matrix tri-completion Initialization algorithm Random Random Random C	Info 156 instance 10 171 feature: No target va	es (no missing values) 5 (no missing values) ariable. 80	Movie Ratings Words and Pictures (2013) 0.000	lf I Stay (2014) 0.000 0.000	Fusion Fury (2014) 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000 0.000	Actors John Selya Jose Ramirez
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank	10 Info 156 instance 10 171 feature: No target va 1 meta attrit	es (no missing values) s (no missing values) ariable. Butes (no missing values) 81	Movie Ratings Words and Pictures (2013) 0.000 0.000	If I Stay (2014) 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000 0.000 0.000	Actors John Selya Jose Ramirez Joseph 'Simon'
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank	10 Info 156 instance 10 171 feature: No target va 1 meta attrit	es (no missing values) s (no missing values) ariable. butes (no missing values) 81 tore Original Order	Movie Ratings Words and Pictures (2013) 0.000 0.000 0.000 0.000 0.000	If I Stay (2014) 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000 0.000 0.000 0.000 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Random rank Random rank Random rank Random rank Random rank	10 Info 156 instance 171 feature: No target va 1 meta attril 10% Rest	es (no missing values) s (no missing values) ariable. butes (no missing values) 81 tore Original Order 83	Movie Ratings Words and Pictures (2013) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	If I Stay (2014) 0.000 0.000 0.000 0.000 1.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank	10 Info 156 instance 171 feature: No target va 1 meta attri 10% Rest	es (no missing values) s (no missing values) ariable. butes (no missing values) 80 butes (no missing values) 81 tore Original Order 83 84	Movie Ratings Words and Pictures (2013) 0.000 0.	If I Stay (2014) 0.000 0.000 0.000 1.000 1.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer
Matrix tri-completion Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 156 instance 171 feature No target vo 10% Rest Variables Variables	es (no missing values) s (no missing values) ariable. butes (no missing values) tore Original Order stable labels (if present) ariable labels (if present)	Movie Ratings Words and Pictures (2013) 0.000 0.	If I Stay (2014) 0.000 0.000 0.000 0.000 1.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 10 Info 15 instance 17 feature: No target va 10% Rest Variables Variables Visualze	es (no missing values) s (no missing values) ariable. butes (no missing values) tore Original Order viable labels (if present) continuous values 66	Movie Ratings Words and Pictures (2013) 0.000 0.	If I Stay (2014) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 10 Info 15 instance 17 feature: No target va 10% Rest Variables Variables Visualze	es (no missing values) s (no missing values) rinable. butes (no missing values) tore Original Order viable labels (if present) continuous values instance dasses 54 rolner	Movie Ratings Words and Pictures (2013) 0.000 0.	If I Stay (2014) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond Kane Richmond
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 10 Info 15 instance 17 feature: No target va 10% Rest Variables Variables Visualze	es (no missing values) s (no missing values) rinable. butes (no missing values) tore Original Order viable labels (if present) c continuous values instance classes Set colors	Movie Ratings Movie Ratings Words and Pictures (2013) 0.000	If I Stay (2014) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond Kane Richmond Kara Young
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 10 Info 15 instance 17 feature: No target va 10% Rest Variables Variables Visualze	es (no missing values) s (no missing values) rinable. butes (no missing values) tore Original Order viable labels (if present) c continuous values instance classes Set colors	Movie Ratings Movie Ratings Words and Pictures (2013) 0.000	If I Stay (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond Kane Richmond Kara Young Kayla Perkins
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	10 Info 10 Info 156 instance 171 feature: No target va 10% Rest Variables Variables Variables Vasuaize Visuaize	es (no missing values) s (no missing values) ariable. butes (no missing values) tore Original Order viable labels (if present) continuous values instance dasses Set colors 89	Movie Ratings Movie Ratings Words and Pictures (2013) 0.000	If I Stay (2014) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond Kane Richmond Kara Young
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Randem rank Run after any change	10 Info 10 Info 156 instance 171 feature: No target va 10% Rest Variables Variables Variables Variables Variables Variables Variables Variables Variables Show va Selection	es (no missing values) s (no missing values) ariable. butes (no missing values) tore Original Order viable labels (if present) continuous values instance dasses Set colors 89	Movie Ratings Movie Ratings Words and Pictures (2013) 0.000	If I Stay (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Fusion Fury (2014) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Graph The Prophecy: Forsaken (2005) 0.000	Actors John Selya Jose Ramirez Joseph 'Simon' Joseph La Cava Joshua Leonard Joyce Kramer Judi Maynard Julia Ormond Kane Richmond Kara Young Kayla Perkins

🖉 v: latest 🕶

Latent Factors

Draws data fusion graph with the estimated latent factors overlaid. Outputs latent factors for further analysis.

Signals

Inputs:

• Fitted fusion graph

Fitted collective latent data model.

Outputs:

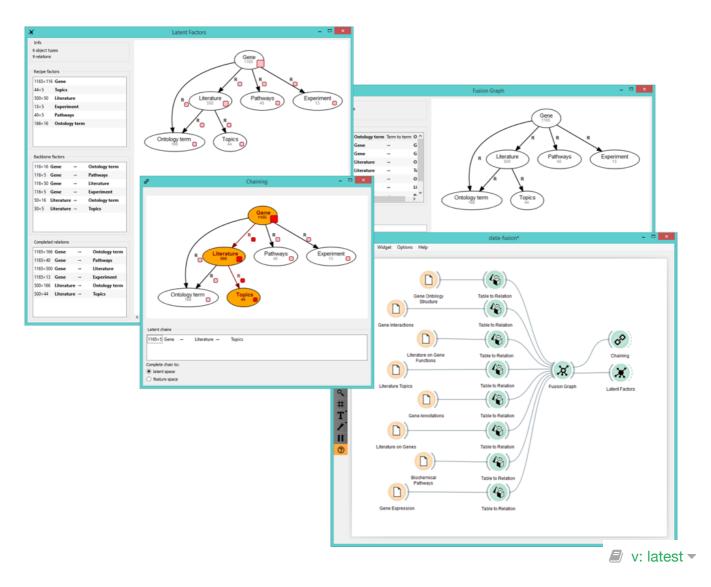
Relation

Selected latent data matrix or a completed relation.

Description

Latent Factors widget displays the fusion graph together with the backbone and recipe matrices estimated by collective matrix factorization.

Fused data from the widget input are decomposed into latent factors, which serve as components for subsequent matrix reconstruction. You would normally draw this widget from **Fusion Graph** and feed its output (a backbone matrix, a recipe matrix or a completed relation) into widgets for downstream data analysis, such as **Hierarchial Clustering** or **Heat Map**.


ж	Latent Factors	- 🗆 🗙
Info 2 object types 1 relations	0	Users
Recipe factors 706×70 Users 855×85 Movies		Movies 855
Backbone factors 70×85 Users rate Movies	3	
Completed relations 706×855 Users rate Movies		

- 1. Information on the input (object types are nodes, data relations are links between the nodes).
- 2. A list of **recipe factors** (latent matrices containing compressed representation of object types). Recipe factors encode latent components of respective object types.
- 3. A list of **backbone factors** (latent matrices containing compressed representation of data relations). Backbone factors encode interactions between the latent components.
- 4. A list of completed relations (completed relation matrices obtained by multiplying the corre-

sponding latent matrices).

Example

In the example below we demonstrate how 8 separate yeast data sets are fused together in **Fusion Graph** and then decomposed into latent factors with **Latent Factors** widget.

Matrix Sampler

Samples a relation matrix.

Signals

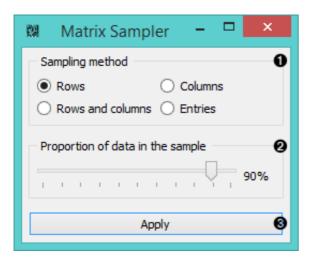
Inputs:

• Data

Data set.

Outputs:

• In-sample Data

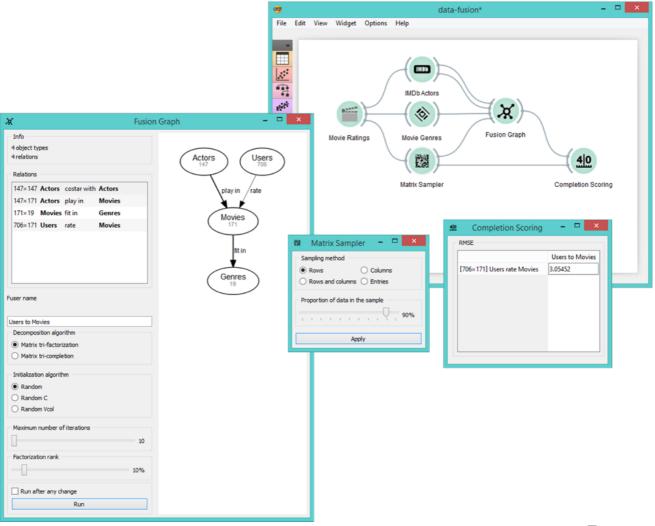

Selected data.

Out-of-the-sample Data

Remaining data.

Description

This widget samples the input data and sends both the sampled and the remaining data to the output. It is useful for evaluating the performance of recommendation systems.



- 1. Select the desired sampling method:
 - rows (randomly samples entire matrix rows)
 - **columns** (randomly samples entire matrix columns)

- rows and columns (samples from the entire matrix)
- entries (randomly samples individual matrix elements)
- 2. Select the proportion of the data you want at the output.
- 3. Press Apply to commit the changes.

Example

Matrix Sampler widget samples data into two subsets: in-sample and out-of-the-sample data. This is useful if you want to check the accuracy of matrix reconstruction with **Completion Scoring**. Feed in-sample data into the **Fusion Graph** to reconstruct the matrix and then compare the results with out-of-the-sample data.

🖉 v: latest 🕶

Mean Fuser

Constructs relation matrices based on the average values of matrix elements.

Signals

Inputs:

• Fusion Graph

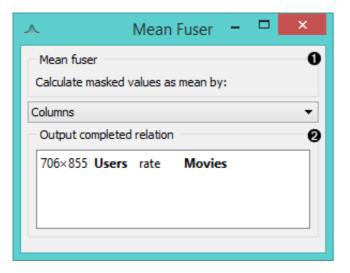
A relational scheme of a data compendium.

Relation

Relationships between two groups of objects.

Outputs:

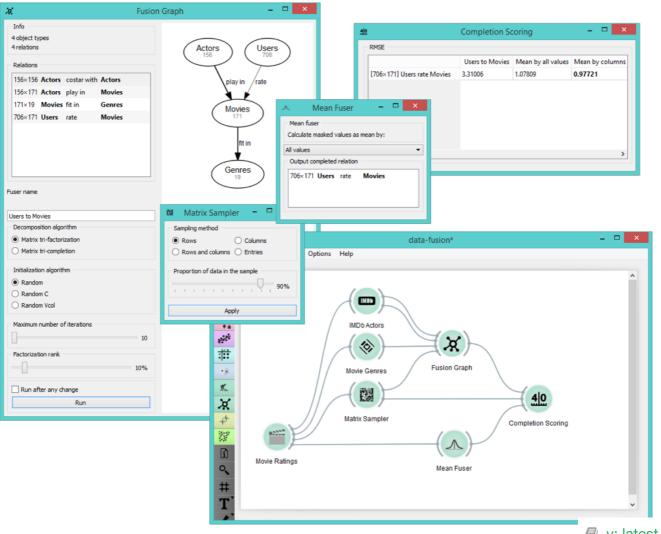
Mean-fitted fusion graph


Mean fuser.

Relation

Relationships between two groups of objects.

Description


The widget completes each relation matrix at the input based on the available data in the matrix. Unknown values in the matrix can be replaced with the values obtained by averaging matrix rows, matrix columns or the entire data matrix.

- 1. Select the axis for mean value calculation:
 - rows
 - columns
 - ∘ all
- 2. Output selected relation matrix, where unknown matrix elements are replaced with mean values.

Example

Mean Fuser widget is useful for comparing RMSE values in **Completion Scoring** widget for the input data set. In the example below we have sampled movie ratings, fed the in-sample movie ratings data into **Fusion Graph** and from there into **Completion Scoring** for evaluation. We also fed the out-of-sample data from **Matrix Sampler** into **Completion Scoring** widget as out-of-sample movie ratings data is needed to assess how well the predicted values correspond to the true data. Finally, we compare prediction to those obtained by **Mean Fuser**.

🖉 v: latest 🔻

Movie Genres

Constructs a movies-by-genres or actors-by-genres relation matrix.

Signals

Inputs:

• Row type

Instances from the input data.

Outputs:

Genres

Data-by-genres relation matrix.

Description

This widget matches movies or actors to movie genres and forms a relation matrix. It is used to obtain information about the genres to which movies in the input belong or about genres that are associated with actors given in the input.

Movie Genres	-	×
Genres		0
Action		
Adventure		
Animation		
Children		
Comedy		
Crime		
Documentary		
Drama		
Fantasy		
Film-Noir		
Horror		
IMAX		
Musical		
Mystery		
Romance		
Sci-Fi		
Thriller		
War		
Western		

1. A list of movie genres included in the MovieLens database.

Example

Below we constructed a movies-by-genres relation matrix using the **Movie Genres** widget. You can see in the **Data Table** that all movies are matched by their genres.

Ŕ	Fusion Graph	- 🗆 🗙					
Info							
2 object types		\frown					
1 relations	(Movies					
Relations							
855×19 Movies fit in Genres		fit in					
	(Genres					
	A Maria Carro	s _ 🗆 🗙					
	Movie Genre						_ 🗆 🗙
	Genres				lata-fusion*		- · · ·
	Action	Viev	w Widget	Options Help			
user name	Animation						
	Children						
	Comedy Crime						
Decomposition algorithm	Documentary		D.S.S.W		<u> </u>		
Decomposition algorithm	Documentary						1
Matrix tri-factorization	Drama						7
	Drama Fantasy		Movie Rating	s Movie Genr	res Fusion G	raph Data Tab	le
Matrix tri-factorization Matrix tri-completion	Drama		Movie Rating	s Movie Genr	res Fusion G	raph Data Tab	le
Matrix tri-factorization Matrix tri-completion Initialization algorithm	Drama Fantasy Film-Noir Horror IMAX		Movie Rating	s Movie Genr	res Fusion G	raph Data Tab	le
Matrix tri-factorization Matrix tri-completion	Drama Fantasy Film-Noir Horror		Movie Rating	s Movie Genr	res Fusion G	raph Data Tab	
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance		Movie Rating	s Movie Genr	res Fusion G Data Table	raph Data Tab	
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi	Info	Movie Rating		Data Table		
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance	Info 855 instances (no missing values))	Thriller	Data Table War	Western	Movies
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol	Drama Fentasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller	Info 855 instances (no missing values) 19 features (no missing values))	Thriller 0.000	Data Table War 0.000	Western 0.000	
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War	Info 855 instances (no missing values)) 1 2	Thriller 0.000 0.000	Data Table War 0.000 0.000	Western 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value) 1 2 3	Thriller 0.000 0.000 0.000	War 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable.) 1 Lues) 3 4	Thriller 0.000 0.000 0.000 1.000	War 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing valu Restore Original Order) 1 2 3 4 5	Thriller 0.000 0.000 1.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing valu Restore Original Order Variables) 1 2 3 4 5 6	Thriller 0.000 0.000 1.000 0.000 0.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Randem rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value) Restore Original Order Variables Variables) 1 2 3 4 5 6 7	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Randem rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value Restore Original Order Variables Variables Show variable labels (if prese Visualize continuous values)) 1 2 3 4 5 6	Thriller 0.000 0.000 1.000 0.000 0.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value Restore Original Order Variables Variables Variables Visualize continuous values Color by instance classes) 1 2 3 4 5 6 7	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value Restore Original Order Variables Variables Show variable labels (if prese Visualize continuous values)) 1 2 3 4 5 6 7 8	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996) Broken Arrow (1996)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value Restore Original Order Variables Variables Variables Visualize continuous values Color by instance classes) 1 2 3 4 5 6 7 8 9	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996) Broken Arrow (1996) Unforgettable (1996)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if prese Visualize continuous values Color by instance dasses Set colors) 1 2 3 4 5 6 7 8 9 10	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996) Broken Arrow (1996) Unforgettable (1996) The Star Maker (1995)
Matrix tri-factorization Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Run after any change	Drama Fantasy Film-Noir Horror IMAX Musical Mystery Romance Sci-Fi Thriller War Western	Info 855 instances (no missing values) 19 features (no missing values) No target variable. 1 meta attributes (no missing value) Restore Original Order Variables Show variable labels (if prese Visualize continuous values Color by instance classes Set colors Selection) 1 2 3 4 5 6 7 8 9 10 11	Thriller 0.000 0.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.000 0.000	War 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Western 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Movies Now and Then (1995) Shanghai Triad (Yao a yao yao da Across the Sea of Time (1995) The Usual Suspects (1995) Georgia (1995) The Postman (1994) Bio-Dome (1996) Broken Arrow (1996) Unforgettable (1996) The Star Maker (1995) Frankie Starlight (1995)

🖉 v: latest 🔻

Movie Ratings

Constructs a relation matrix of user ratings for movies.

Signals

Inputs:

• (None)

Outputs:

Ratings

Movie ratings relation matrix.

Description

Movie Ratings widget gives you access to data on user ratings for more than 8500 movies from the Movielens database. The data set contains 1 to 5-star ratings representing user-movie preferences. This is a good widget to try out data fusion as it gives you instant access to the data.

🎬 🛛 Movie R	atings		×
- Movie Selection	(from 8570)		0
Fraction of m	ovies		
	1 1 1 1	1 1 1	10 %
 Time period: 			
Starting yea	r: 200	05	* *
Ending year:	200	07	*
	Apply		0

- 1. Select a subset of movies for which you would like to obtain user ratings:
 - **fraction of movies** will output a specified fraction of movies selected uniformly at random from the entire database.
 - time period will output all the movies released in a specified time period
- 2. Click *Apply* to commit the changes.

Example

Movie Ratings will output users-by-movies data matrix for further analysis. Feed it into the Fusion Graph to decompose data matrix into the product of smaller latent data matrices or view the data in a Data Table.

¥.	Fusion Graph	- 🗆 🗙							
Info 2 object types 1 relations		Users							
Relations									
706×855 Users rate Movies		Movies 855							
		e Ratings 🗕 🗆 🗙			data-fusion*		-		
	Movie Select Fraction o	ion (from 8570)	View	Widget Options	Help				
Fuser name	Time period Starting y								
Decomposition algorithm Matrix tri-factorization	Ending ye			(1 111))					
Matrix tri-ractorization Matrix tri-completion Initialization algorithm		Apply	Mo	ovie Ratings	Fusion Graph	Data Table			
O Matrix tri-completion			Mo	ovie Ratings	Fusion Graph Data Table	Data Table			2
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol		Apply			Data Table		Undertow (2004)		_
Matrix tri-completion Initialization algorithm Random Random Random C		Apply Info 706 instances		Shaun of the Dead (2)	Data Table		Undertow (2004) ?	The Incredibles (2004 ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations	10	Apply Info 706 instances 855 features (98.3% missing values) No target variable.	1	Shaun of the Dead (2)	Data Table	f Paradise (1992)		The Incredibles (2004	_
Matrix tri-completion Initialization algorithm Random Random Random C Random Vcol	10	Apply Info 706 instances 855 features (98.3% missing values)	1 ?	Shaun of the Dead (2)	Data Table 1492: Conquest of ?	f Paradise (1992)	?	The Incredibles (2004)	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations		Apply Info 706 instances 855 features (98.3% missing values) No target variable.	1 ? 2 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ?	f Paradise (1992)	? ?	The Incredibles (2004 ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations	10	Apply Info 706 instances 855 features (98.3% missing values) No target variable. I meta attributes (no missing values)	1 ? 2 ? 3 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ?	f Paradise (1992)	? ? ?	The Incredibles (2004 ? ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vool Maximum number of iterations Factorization rank	10	Apply Apply Info 706 instances 855 features (98,3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables	1 ? 2 ? 3 ? 4 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	The Incredibles (2004 ? ? ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vool Maximum number of iterations Factorization rank Run after any change	10	Apply Apply Info 706 instances 855 features (98.3% missing values) No target variable. I meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present)	1 ? 2 ? 3 ? 4 ? 5 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	? ? ? ?	The Incredibles (2004 ? ? ? ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vool Maximum number of iterations Factorization rank Run after any change	10	Apply Apply Info To6 instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Visualize continuous values	1 ? 2 ? 3 ? 4 ? 5 ? 6 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	? ? ? ? ? ?	The Incredibles (2004 ? ? ? ? ? 4.000	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Random rank Run after any change	10	Apply Info Tofo instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Visualize continuous values Color by instance dasses	1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	? ? ? ? ? ? ? ?	The Incredibles (2004 ? ? ? ? 4.000 ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vool Maximum number of iterations Factorization rank Run after any change	10	Apply Apply Info To6 instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Visualize continuous values	1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 ?	Shaun of the Dead (2)	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	The Incredibles (2004 ? ? ? ? 4.000 ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Random rank Random rank Random rank	10	Apply Info Tofo instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Visualize continuous values Color by instance dasses	1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 ?	Shaun of the Dead (2) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	The Incredibles (2004 ? ? ? ? ? 4.000 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Random rank Run after any change	10	Apply Apply Info 706 instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Variables Color by instance dasses Set colors	1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 ? 10 3	Shaun of the Dead (2) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	The Incredibles (2004 ? ? ? ? ? 4.000 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	_
Matrix tri-completion Initialization algorithm Random Random C Random Vcol Maximum number of iterations Factorization rank Randar any change	10	Apply Apply Info 706 instances 855 features (98.3% missing values) No target variable. 1 meta attributes (no missing values) Restore Original Order Variables Show variable labels (if present) Variables Color by instance classes Set colors Selection	9 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 ? 10 3 11 ? 12 ?	Shaun of the Dead (2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Data Table 004) 1492: Conquest of ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	f Paradise (1992)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	The Incredibles (2004 ? ? ? ? ? 4.000 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	_

🖉 v: latest 🕶

Table to Relation

Converts a data table into a relation matrix. Labels objects in rows and columns of a relation matrix.

Signals

Inputs:

• Data

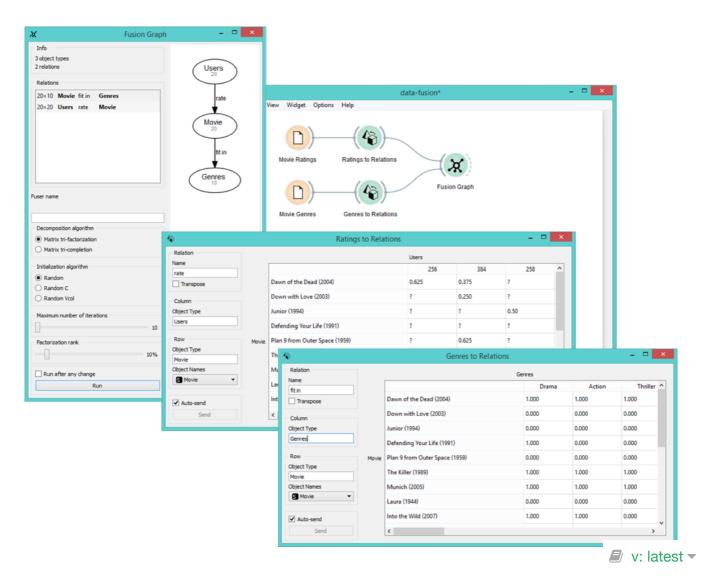
Attribute-valued data set.

Outputs:

Relation

Relationships between two groups of objects.

Description


Table to Relation widget is probably the most often used widget in the data fusion set. It allows you to define relations just by labeling the axes. Your data set from the **File** widget will be transformed into a relation matrix, which can be later fused together with other relation matrices into a collective latent data model.

Relation 0		Genres		
Name		Drama	Action	Thriller 4
Transpose	Dawn of the Dead (2004)	1.000	1.000	1.000
Column	Down with Love (2003)	0.000	0.000	0.000
Object Type	Junior (1994)	0.000	0.000	0.000
Genres	Defending Your Life (1991)	1.000	0.000	0.000
	vie Plan 9 from Outer Space (1959)	0.000	0.000	0.000
Object Type Movie	The Killer (1989)	1.000	1.000	1.000
Object Names	Munich (2005)	1.000	1.000	1.000
S Movie 🔻	Laura (1944)	0.000	0.000	0.000
✓ Auto-send	Into the Wild (2007)	1.000	1.000	0.000
Send	<			>

- 1. Provide a descriptive name for the relation. Option *transpose* will shift the axes.
- 2. Label the object type in columns. Your entry will be displayed on top of the table. Note that the labels are case-sensitive.
- 3. Label the object type in rows. If there is a label present in the data, it will be used as default.
- 4. If *Auto send* is ticked, your changes will be communicated automatically. Alternatively click *Send*.

Example

In the example below we took two regular files with data on movie ratings and movie genres and fed them into separate **Table to Relation** widgets. In these widgets we specified the relations contained in the data and named the axes accordingly. See how **Fusion Graph** is then able to organize data sets into a relational graph, i.e. a data fusion graph, simply on the basis of axes names?

Educational

Interactive k-Means

Polynomial Regression

Gradient Descent

Gradient Descent

Educational widget that shows gradient descent algorithm on a logistic or linear regression.

Signals

Inputs:

• Data

Input data set.

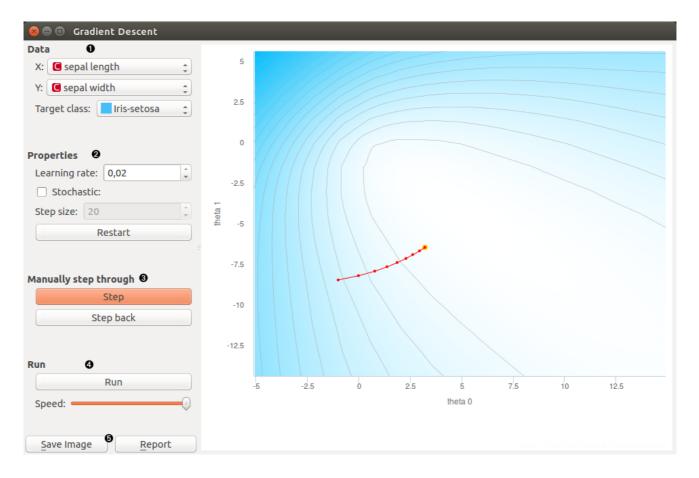
Outputs:

• Data

Data with columns selected in widget.

• Classifier

Model produced on the current step of the algorithm.


Coefficients

Logistic regression coefficients on the current step of the algorithm.

Description

This widget shows steps of gradient descent for a logistic and linear regression step by step. Gradient descent is demonstrated on two attributes that are selected by user.

Gradient descent is performed on logistic regression if class in data set is discrete and linear regression if class is continuous.

- 1. Select two attributes (**x** and **y**) on which gradient descent algorithm is preformed. Select **target class**. It is class that is classified against all other classes.
- 2. Learning rate is step size in a gradient descent

With **stochastic** checkbox you can select whether gradient descent is **stochastic** or not. If stochastic is checked you can set **step size** that is amount of steps of stochastic gradient descent performed in one press on step button.

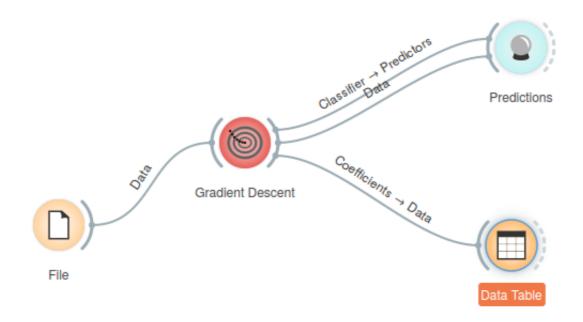
Restart: start algorithm from beginning

3. Step: perform one step of the algorithm

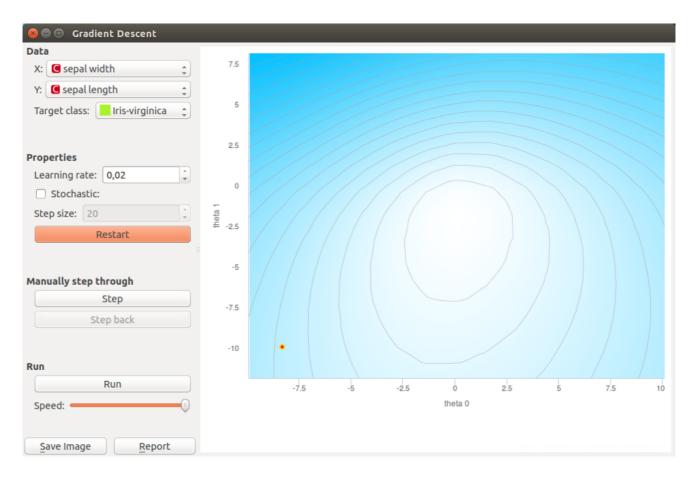
Step back: make a step back in the algorithm

4. Run: automatically perform several steps until algorithm converge

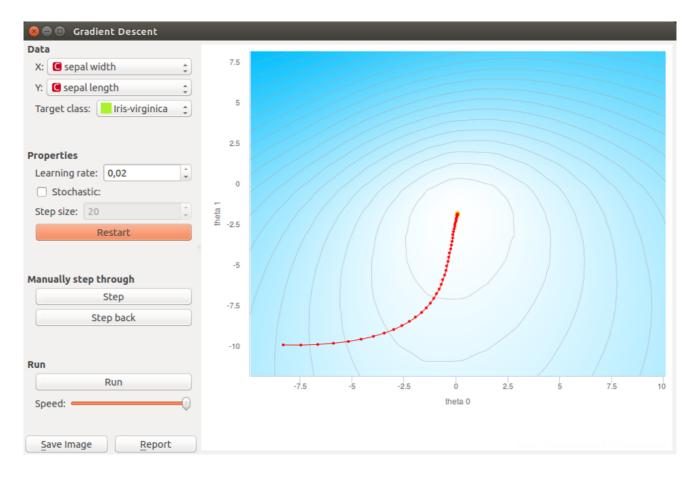
Speed: set speed of automatic stepping

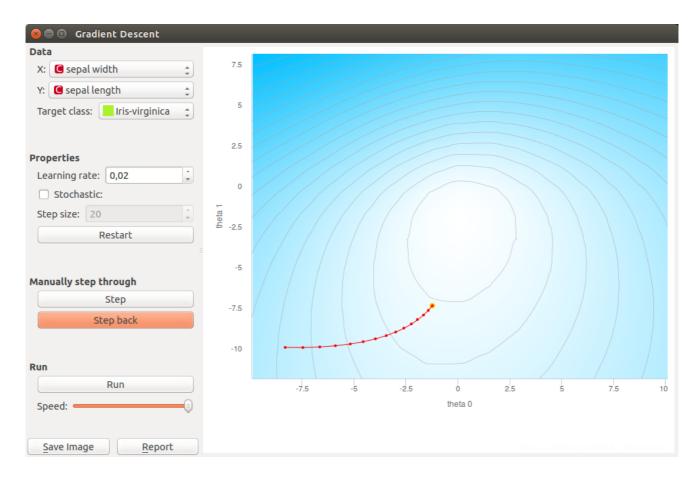

5. Save Image saves the image to the computer in a .svg or .png format.

Report includes widget parameters and visualization in the report.


Example

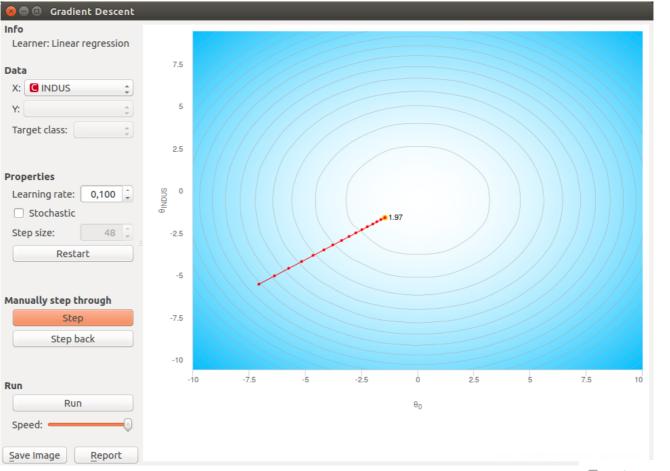
In Orange we connected *File* widget with *Iris* data set to *Gradient Descent* widget. Iris data set has discrete class so *Logistic regression* will be used this time. We connected outputs of the widget to *Predic*-


tions widget to see how data are classified and *Data Table* widget where we inspect coefficients of logistic regression.


We opened *Gradient Descent* widget and set *X* to *sepal width* and *Y* to *sepal length*. Target class is set to *Iris-virginica*. We set *learning rate* to 0.02. With click in graph we set beginning coefficients (red dot).

We performs step of the algorithm with pressing **Step** button. When we get bored with clicking we can finish stepping with press on **Run** button.

If we want to go back in the algorithm we can do it with pressing **Step back** button. This will also change model. Current model uses positions of last coefficients (red-yellow dot).



In the end we want to see predictions for input data so we can open *Predictions* widget. Predictions are listed in left column. We can compare this predictions to real classes.

😣 🗖 🗊 Predictions						
Info		Logistic Regression	iris-bin	iris	sepal width	E
Data: 150 instances. Predictors: 1	100	0.43 : 0.57 → Others	Others	Iris-versicolor	-0.588	-
Task: Classification	101	0.72 : 0.28 → Iris-vi	Iris-virginica	Iris-virginica	0.569	(
Restore Original Order	102	0.49 : 0.51 → Others	Iris-virginica	Iris-virginica	-0.819	•
Restore originat order	103	0.94 : 0.06 → Iris-vi	Iris-virginica	Iris-virginica	-0.125	•
Options (classification)	104	0.73 : 0.27 → Iris-vi	Iris-virginica	Iris-virginica	-0.356	(
Show predicted class	105	0.81 : 0.19 → Iris-vi	Iris-virginica	Iris-virginica	-0.125	(
	106	0.98 : 0.02 → Iris-vi	Iris-virginica	Iris-virginica	-0.125	:
Show predicted probabilities	107	0.13 : 0.87 → Others	Iris-virginica	Iris-virginica	-1.282	-
Iris-virginica	108	0.96 : 0.04 → Iris-vi	Iris-virginica	Iris-virginica	-0.356	•
Others	109	0.88 : 0.12 → Iris-vi	Iris-virginica	Iris-virginica	-1.282	•
	110	0.94 : 0.06 → Iris-vi	Iris-virginica	Iris-virginica	1.263	•
	111	0.80 : 0.20 → Iris- <u>vi</u>	Iris-virginica	Iris-virginica	0.338	(
	112	0.78 : 0.22 → Iris-vi	Iris-virginica	Iris-virginica	-0.819	(
🧭 Draw distribution bars	113	0.89 : 0.11 → Iris-vi	Iris-virginica	Iris-virginica	-0.125	•
Data View	114	0.45 : 0.55 → Others	Iris-virginica	Iris-virginica	-1.282	-
Show full data set	115	0.49 : 0.51 → Others	Iris-virginica	Iris-virginica	-0.588	-
	116	0.76 : 0.24 → Iris <u>-vi</u>	Iris-virginica	Iris-virginica	0.338	(=
Output	117	0.81 : 0.19 → Iris- <u>vi</u>	Iris-virginica	Iris-virginica	-0.125	(
Griginal data	118	0.98 : 0.02 → Iris-vi	Iris-virginica	Iris-virginica	1.726	2
	119	0.98 : 0.02 → Iris-vi	Iris-virginica	Iris-virginica	-1.051	2
Predictions	120	0.62 : 0.38 → Iris-vi	Iris-virginica	Iris-virginica	-1.976	(
🗹 Probabilities	121	0.90 : 0.10 → Iris-vi	Iris-virginica	Iris-virginica	0.338	•
	122	0.38 : 0.62 → Others	Iris-virginica	Iris-virginica	-0.588	
Report	(((((Ð

If we want to demonstrate *linear regression* we can change data set to *Housing*. That data set has a continuous class variable. When using linear regression we can select only one feature what means that our function is linear. The another parameter that is plotted in the graph is intercept of a linear function.

This time we selected *INDUS* as a independent variable. In widget we can make same actions as before. In the end we can also check predictions for each point with *Predictions* widget. And coefficients of linear regression in a *Data Table*.

🖉 v: latest 🕶

Interactive k-means

Educational widget that shows the working of a k-means clustering.

Signals

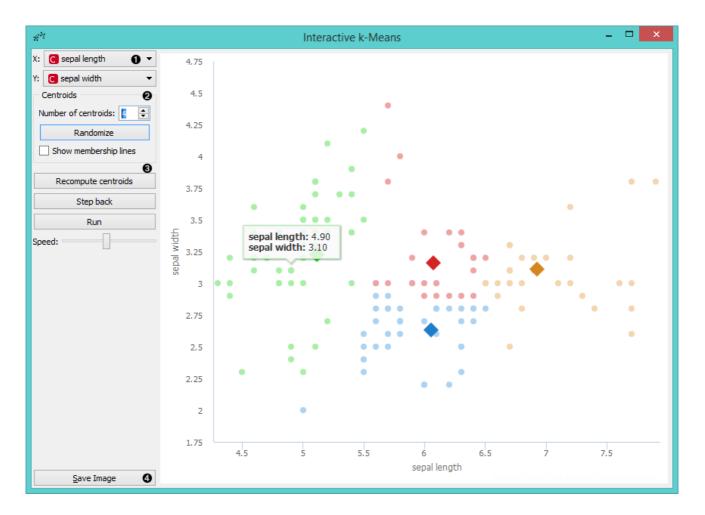
Inputs:

• Data

Input data set.

Outputs:

• Data


Data set with cluster annotation.

• Centroids

Centroids position.

Description

The aim of this widget is to show the working of a k-means clustering algorithm on two attributes from a data set. The widget applies k-means clustering to the selected two attributes step by step. Users can step through the algorithm and see how it works.

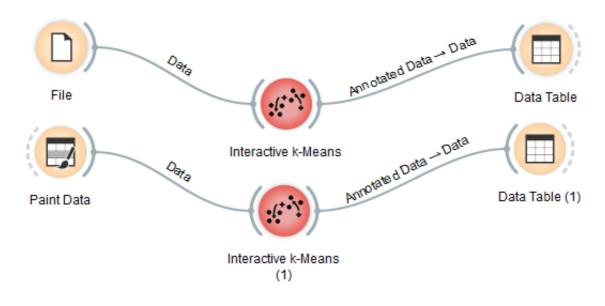
- 1. Select attributes for **x** and **y** axis.
- 2. Number of centroids: set the number of centroids.

Randomize: randomly assigns position of centroids. If you want to add centroid on a particular position in the graph, click on this position. If you want to move the centroid, drag and drop it on the desired position.

Show membership lines: if ticked, connection between data points and closest centroids are shown.

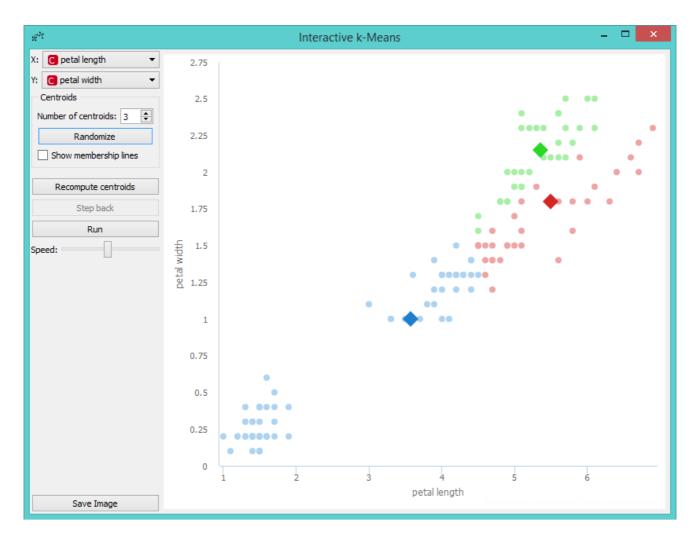
3. **Recompute centroids** or **Reassign membership**: step through different stages of the algoritm. *Recompute centroids* moves centroids to new positions, based on the most central position of the data assigned to the centroid. *Reassign membership* reassigns data points to the centroid they are the closest to.

Step back: make a step back in the algorithm.

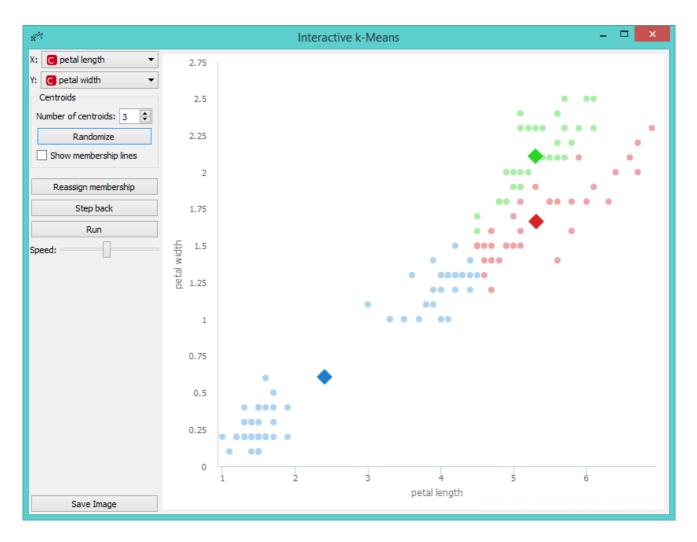

Run: step through the algorithm automatically.

Speed: set the speed of automatic stepping.

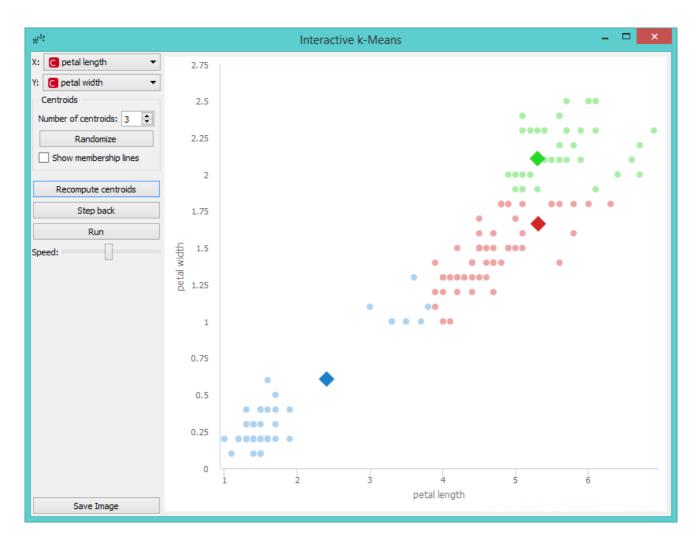
4. Save Image saves the image to the computer in a .svg or .png format.

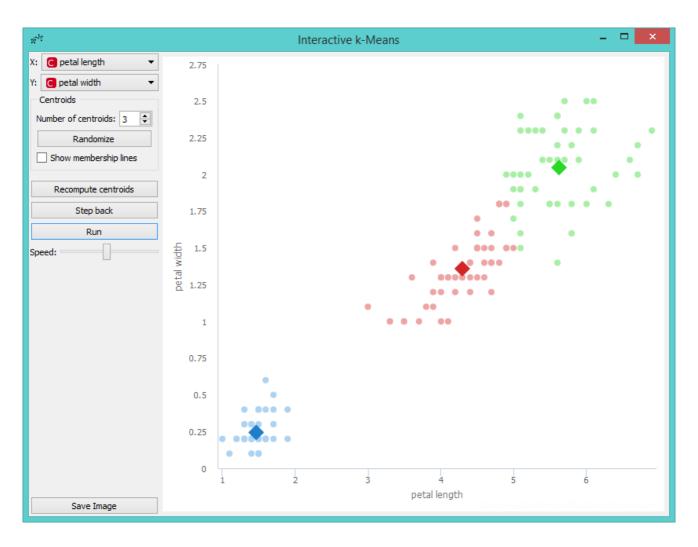

Example

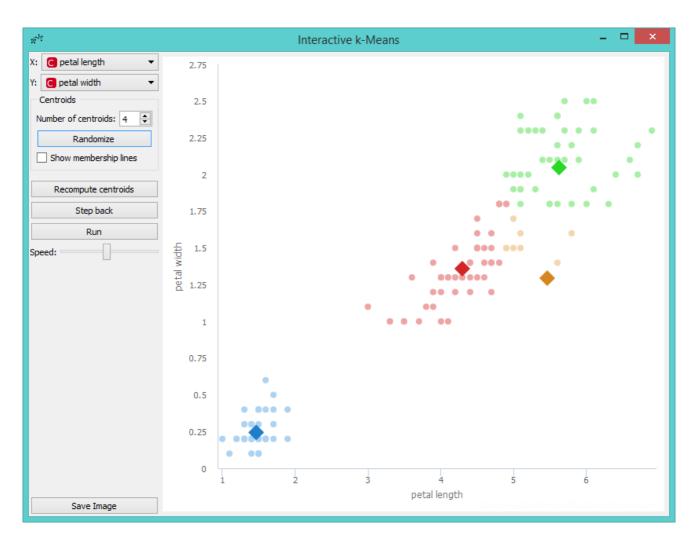
Here are two possible schemas that show how the **Interactive k-Means** widget can be used. You can load the data from **File** or use any other data source, such as **Paint Data**. Interactive k-Means widget also produces a data table with results of clustering and a table with centroids positions. These data can be inspected with the **Data Table** widget.

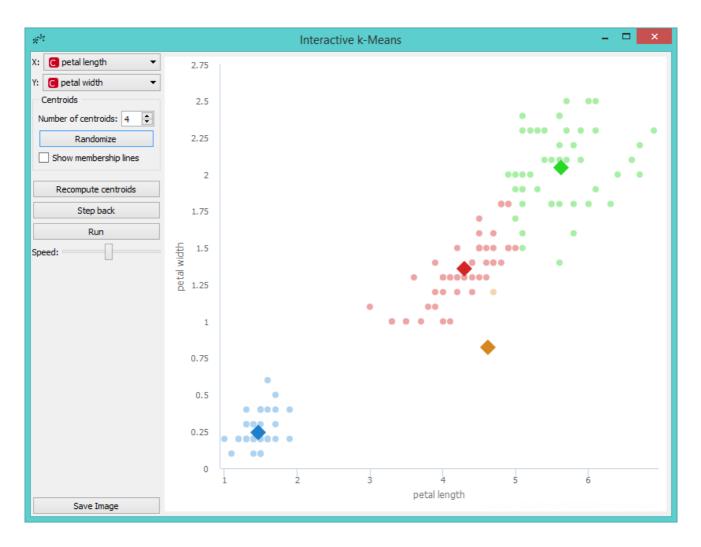


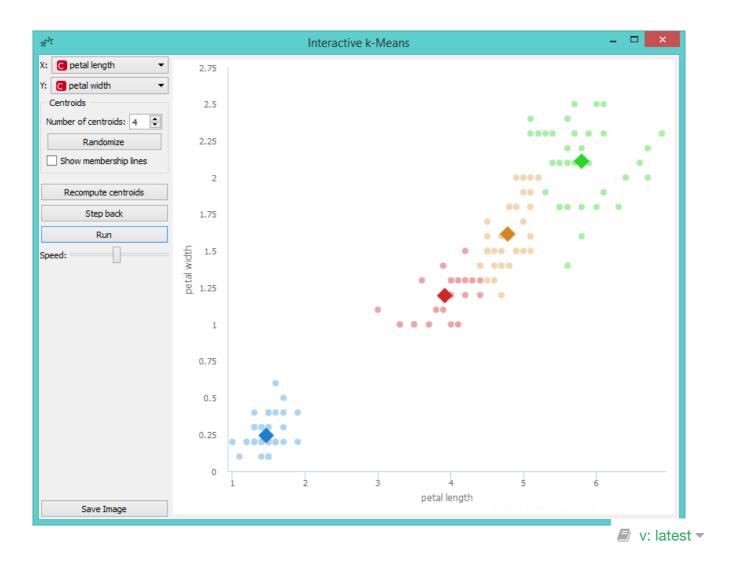
Let us demonstrate the working of the widget on Iris data set.


We provide the data using **File**. Then we open **Interactive k-Means**. Say, we will demonstrate k-Means on *petal length* and *petal width* attributes, so we set them as *X* and *Y* parameters. We also decided to perform clustering for 3 clusters. This is set as the *Number of centroids*.


If we are not satisfied with positions of centroids we can change them with a click on the **Randomize** button. Then we perform the first recomputing of centroids with a click on the **Recompute centroids**. We get the following image.


The next step is to reassign membership of all points to the closest centroid. This is performed with a click on the **Reasign membership** button.


Then we repeat these two steps until the algorithm converges. This is the final result.


Perhaps we are not satisfied with the result because we noticed that maybe classification into 4 clusters would be better. So we decided to add a new centroid. We can do this by increasing the number of centroids in the control menu or with a click on the position in the graph where we want to place the centroid. We decided to add it with a click. The new centroid is the orange one.

Now we can repeat running the algorithm until it converges again, but before that we will move the new centroid to change the behavior of the algorithm. We grabbed the orange centroid and moved it to the desired position.

Then we press *Run* and observe the centroids while the algorithm converges again.

Polynomial Classification

Educational widget that visually demonstrates classification in two classes for any classifier.

Signals

Inputs

• Data

Input data set.

• Preprocessor

Data preprocessors.

• Learner

Classification algorithm used in the widget. Default set to Logistic Regression Learner.

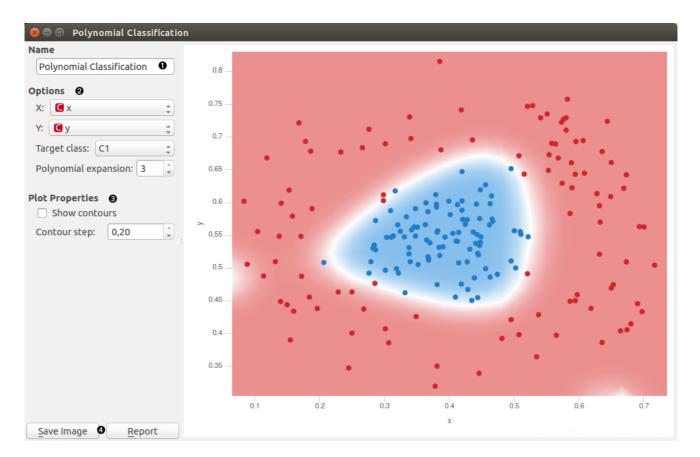
Outputs

• Learner

Classification algorithm used in the widget.

• Classifier

Trained classifier.


Coefficients

Classifier coefficients if it has them.

Description

This widget interactively shows classification probabilities for classification in two classes using color gradient and contour lines for any classifiers form *Orange Classification* module. In the widget, polynomial expansion can be set. Polynomial expansion is a regulation of the degree of polynom that is used to transform the input data and has an effect on classification. If polynomial expansion is set to 1 it means that untransformed data are used in the regression. If polynomial expansion is set to 2 we get following additional attributes:

- first attribute on power 2
- first attribute * second attribute
- second attribute on power 2

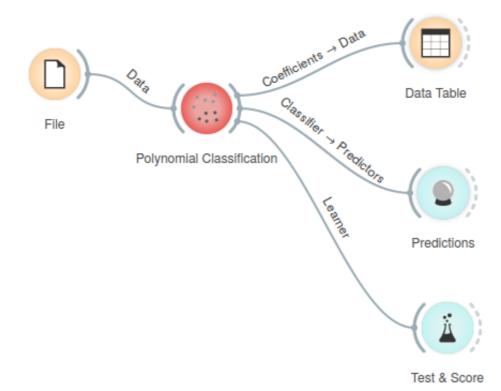
- 1. Classifier name.
- 2. X: attribute on axis x.

Y: attribute on axis y.

Target class: Class in input data that is classified apart from others classes because widget support only two

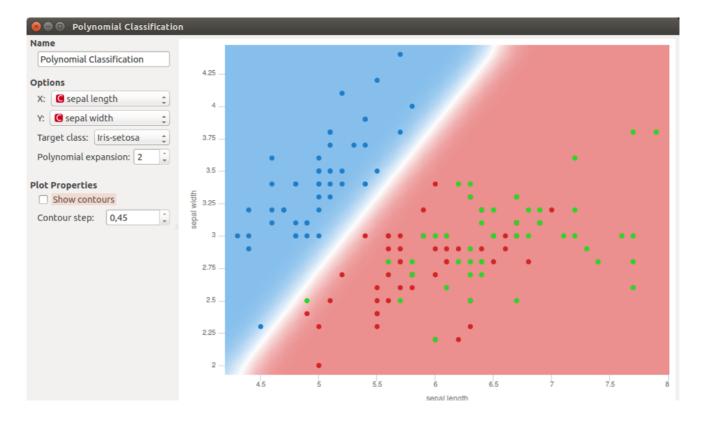
class classification.

Polynomial expansion: Degree of polynom that is used to transform the input data.

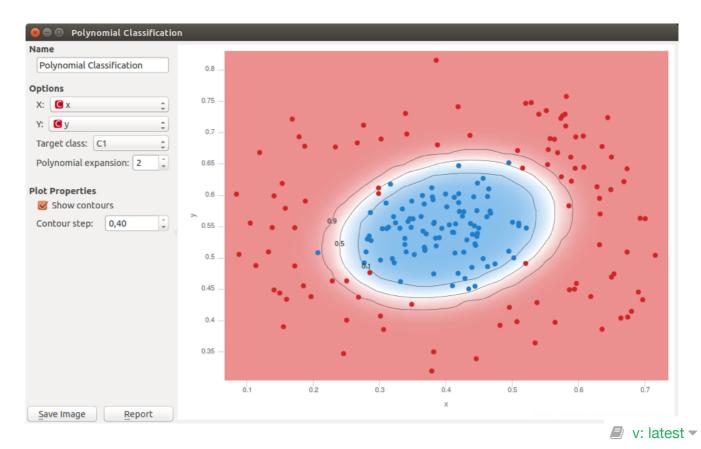

3. Show contours: Enable contour lines in the graph.

Contour step: Density of contour lines.

4. Save Image saves the image to the computer in a .svg or .png format.


Report includes widget parameters and visualization in the report.

Example



We loaded *iris* data set with the File widget and connected it to *Polynomial Classification* widget. To demonstrate outputs connections we connected *Coefficients* to Data Table widget where we can inspect their values. *Learner* output can be connected to *Test & Score* widget and *Classifier* to *Predictions widget*.

In the widget we selected *sepal length* as our *X* variable and *sepal width* as our *Y* variable. We set *Polynomial expansion* to 1. That performs classification on non transformed data. Result is show on the figure below. Color gradient represents the probability to classify data on its position in one of two classes. Blue color represents classification in target class and red color classification in class with all others examples.

In next example we changed *File* widget with *Paint data* widget and plotted some custom data. Because center of data has one class and surrounding another *Polynomial expansion* degree 1 does not perform good classification. We set *Polynomial expansion* to 2 and got classification in figure below. We also selected to use contour lines.

Polynomial Regression

Educational widget that interactively shows regression line for different regressors.

Signals

Inputs:

• Data

Input data set. It needs at least two continuous attributes.

• Preprocessor

Data preprocessors.

• Learner

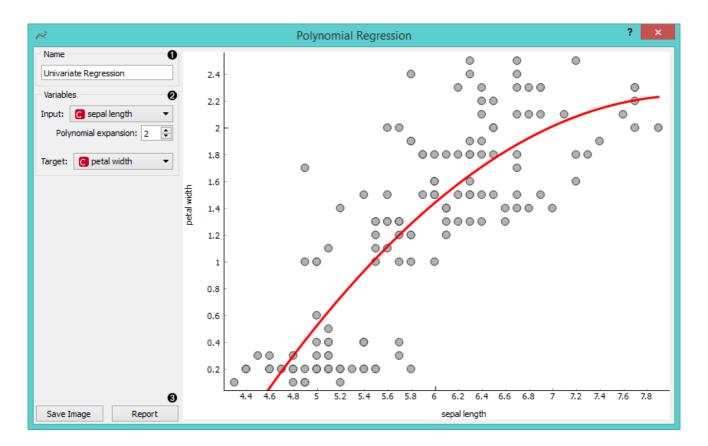
Regression algorithm used in the widget. Default set to Linear Regression.

Outputs:

• Learner

Regression algorithm used in the widget.

• Predictor


Trained regressor.

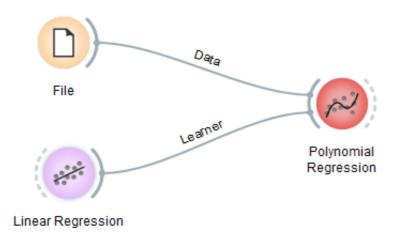
Coefficients

Regressor coefficients if it has them.

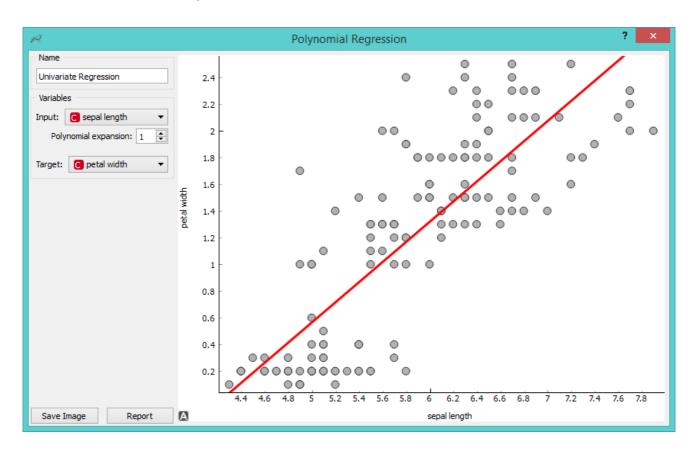
Description

This widget interactively shows regression line using any of the regressors from *Orange3 Regression* module. In the widget, polynomial expansion can be set. Polynomial expansion is a regulation of the degree of polynom that is used to transform the input data and has an effect on the shape of a curve. If polynomial expansion is set to 1 it means that untransformed data are used in the regression.

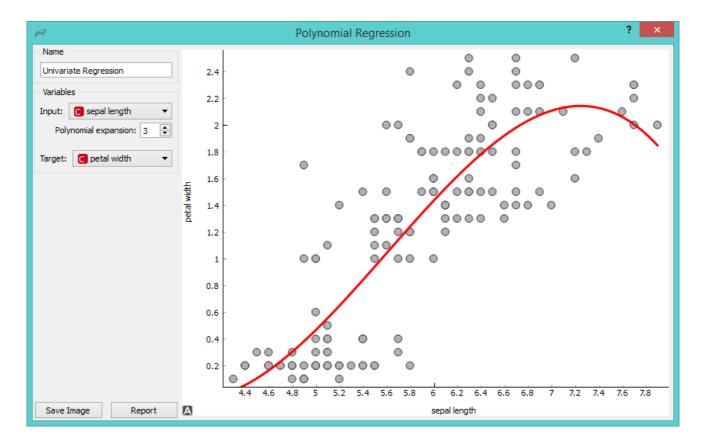
- 1. Regressor name.
- 2. *Input*: independent variable on axis x.

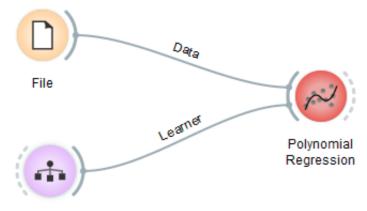

Polynomial expansion: degree of polynomial expansion.

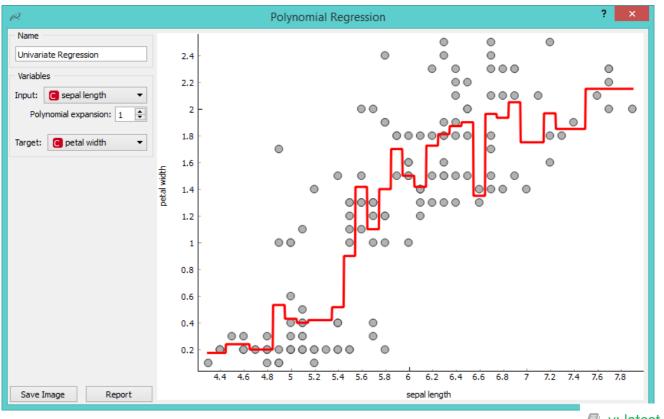
Target: dependent variable on axis y.

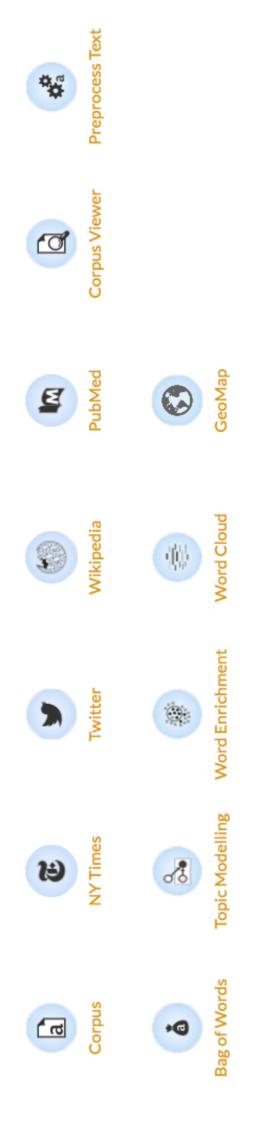

3. Save Image saves the image to the computer in a .svg or .png format.

Report includes widget parameters and visualization in the report.


Example


Polynomial Regression widget. In the widget we selected *petal length* as our *Input* variable and *petal width* as our *Target* variable. We set *Polynomial expansion* to 1 which gives us a linear regression line. The result is shown on the figure below.


The line can fit better if we increase the **Polynomial expansion** parameter. Say, we set it to 3.


To observe different results, change **Linear Regression** to any other regression learner from Orange. Example below is done with **Regression Tree** learner.

🖉 v: latest 🕶

Text

Bag of Words

Generates a bag of words from the input corpus.

Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Corpus

Corpus with bag of words.

Description

Bag of Words model creates a corpus with word counts for each data instance (document). The count can be either absolute, binary (contains or does not contain) or sublinear (logarithm of the term frequency). Bag of words model is required in combination with Word Enrichment and could be used for predictive modelling.

Bag of Words	? ×
Options	0
Term Frequency:	Count 👻
Document Frequency:	(None) 🔻
Regularization:	(None) 👻
Report 🕗 🗹	Commit Automatically 3

- 1. Parameters for bag of words model:
 - Term Frequency:
 - Count: number of occurences of a word in a document
 - Binary: word appears or does not appear in the document
 - Sublinear: logarithm of term frequency (count)


- Document Frequency:
 - (None)
 - IDF: inverse document frequency
 - Smooth IDF: adds one to document frequencies to prevent zero division.
- Regulariation:
 - (None)
 - L1 (Sum of elements): normalizes vector length to sum of elements
 - L2 (Euclidean): normalizes vector length to sum of squares
- 2. Produce a report.
- 3. If *Commit Automatically* is on, changes are communicated automatically. Alternatively press *Commit*.

Example

In the first example we will simply check how the bag of words model looks like. Load *book-excerpts.tab* with Corpus widget and connect it to **Bag of Words**. Here we kept the defaults - a simple count of term frequencies. Check what the **Bag of Words** outputs with **Data Table**. The final column in white represents term frequencies for each document.

🥶 untitl	ed*			-		
File Edi	it View Widget Options Help					
»	a)-(å)-	-([& Bag of Wo Options Term Frequence		
***	Corpus Bag of Words	Data	Table	Document Free Regularization	(None)	
*8				Report	Commit Automatically	
<i>1</i> 5 <u>–</u>	Data Table	_			X	
@ T	140 instances 10865 features (sparse, density 0.05%)	hidde	category	text True	{}	
¢	Discrete class with 2 values (no	1	children	the house Jim s	broke=1.000, by=4.000, trebly=1.000, basin=3.000, executed=1.000, picture=1.000, se	
	missing values) 1 meta attribute (no missing values)	2	children	has lived rough	golden=1.000, carried=1.000, bar=2.000, confessions=1.000, air=1.000, again=5.000, r	
		3	children	Now boy he sai	gathering=1.000, letter=1.000, bring=1.000, resolved=1.000, payment=1.000, peculiar	
000	Variables	4	children	thanks to you b	despair=1.000, thanks=1.000, finely=1.000, swift=1.000, terrors=1.000, rogues=1.000,	
22	Show variable labels (if present)	5	children	the empty ches	curiosity=1.000, drag=1.000, retreat=1.000, beyond=1.000, brief=1.000, cowardice=1	
X	Visualize continuous values	6	children	stood irresolute	dance=3.000, furious=1.000, such=1.000, matter=1.000, fools=1.000, nearest=1.000, p	
	Color by instance classes	7	children	WE rode hard al	son=1.000, rascal=1.000, smoke=1.000, proud=1.000, hearty=1.000, villains=1.000, co	
	Selection	8	children	same as the tatt	entry=1.000, roll=1.000, cache=1.000, blank=1.000, rank=1.000, manned=1.000, houn	
	Select full rows	9	children	IT was longer t	transparent=1.000, housekeeper=1.000, explored=1.000, fancies=1.000, plans=1.000,	
		10	children	treasure Long J	dream=1.000, picked=1.000, telescope=1.000, substance=1.000, unearthed=1.000, ro	
	Restore Original Order	11	children	We are so grate	whatever=1.000, favor=1.000, therefore=1.000, beam=1.000, dismay=1.000, dwelt=1	
	Report	12	children	l am told said t	loudly=1.000, frock=1.000, bread=2.000, brook=1.000, around=1.000, grieve=1.000, g	
		13	children	to find the one	watched=2.000, chin=1.000, merrily=1.000, earnestly=1.000, stalks=1.000, stop=1.000	
	Send Automatically	14	children	take away the p	unfriendlv=1.000. nest=1.000. bites=1.000. trulv=1.000. partv=1.000. lonesome=1.000 Y	1

In the second example we will try to predict document category. We are still using the *book-excerpt-s.tab* data set, which we sent through Preprocess Text with default parameters. Then we connected **Preprocess Text** to **Bag of Words** to obtain term frequencies by which we will compute the model.

Connect **Bag of Words** to **Test & Score** for predictive modelling. Connect **SVM** or any other classifier to **Test & Score** as well (both on the left side). **Test & Score** will now compute performance scores for each learner on the input. Here we got quite impressive results with SVM. Now we can check, where the model made a mistake.

Add **Confusion Matrix** to **Test & Score**. Confusion matrix displays correctly and incorrectly classified documents. *Select Misclassified* will output misclassified documents, which we can further inspect with Corpus Viewer.

v: latest -

Corpus Viewer

Displays corpus content.

Signals

Inputs:

• Corpus

Corpus instance.

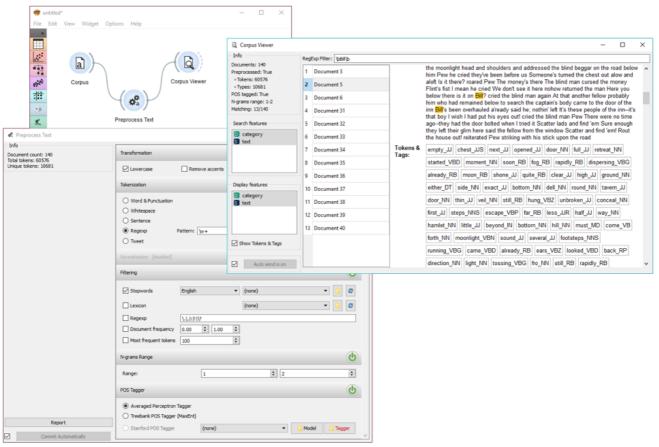
Outputs:

• Corpus

A Corpus instance.

Description

Corpus Viewer is meant for viewing text files (instances of Corpus). It will always output an instance of corpus. If *RegExp* filtering is used, the widget will output only matching documents.


🗟 Corpus Viewer				— П	×
		xp Filter:		_	
Documents: 140 Preprocessed: False	1	Document 1	category:	children	^
• Tokens: n/a • Types: n/a	2	Document 2	text:	the house Jim says he rum ; and as he spoke he reeled a little and	
POS tagged: False N-grams range: 1–1	3	Document 3		caught himself with one hand against the wall Are you hurt? cried I Rum he repeated I must get away from here Rum! Rum! I ran to fetch it but I was quite unsteadied by all that had fallen out and I broke one	
Matching: 140/140	4 Document 4 glass and fouled the tap and while I was	glass and fouled the tap and while I was still getting in my own way I			
Search features	3 5	Document 5		heard a loud fall in the parlour and running in beheld the captain lying full length upon the floor At the same instant my mother alarmed by	
category S text	6	Document 6		the cries and fighting came running downstairs to help me Between us we raised his head He was breathing very loud and hard but his	
	7	Document 7		eyes were closed and his face a horrible colour Dear deary me cried my mother what a disgrace upon the house! And your poor father	
	8	Document 8		sick! In the meantime we had no idea what to do to help the captain nor any other thought but that he had got his death-hurt in the scuffle	
	9	Document 9		with the stranger I got the rum to be sure and tried to put it down his throat but his teeth were tightly shut and his jaws as strong as iron It	
Display features	10	Document 10		was a happy relief for us when the door opened and Doctor Livesey	
D category S text	11	Document 11		came in on his visit to my father Oh doctor we cried what shall we do? Where is he wounded? Wounded? A fiddle-stick's end! said the	
	12	Document 12		doctor No more wounded than you or I The man has had a stroke as I warned him Now Mrs Hawkins just you run upstairs to your husband	
	13	Document 13		and tell him if possible nothing about it For my part I must do my best to save this fellow's trebly worthless life; Jim you get me a basin	
Show Tokens & Tags	14	Document 14		When I got back with the basin the doctor had already ripped up the captain's sleeve and exposed his great sinewy arm It was tattooed in	
	15	Document 15		several places Here's luck A fair wind and Billy Bones his fancy were very neatly and clearly executed on the forearm; and up near the	
 Auto send is on 	16	Desument 16]	shoulder there was a sketch of a gallows and a man hanging from it	~

- 1. Information:
 - Documents: number of documents on the input
 - *Preprocessed*: if preprocessor is used, the result is True, else False. Reports also on the number of tokens and types (unique tokens).
 - *POS tagged*: if POS tags are on the input, the result is True, else False.
 - *N-grams range*: if N-grams are set in Preprocess Text, results are reported, default is 1-1 (one-grams).
 - *Matching*: number of documents matching the *RegExp Filter*. All documents are output by default.
- 2. *RegExp Filter*: Python regular expression for filtering documents. By default no documents are filtered (entire corpus is on the output).
- 3. *Search Features*: features by which the RegExp Filter is filtering. Use Ctrl (Cmd) to select multiple features.
- 4. *Display Features*: features that are displayed in the viewer. Use Ctrl (Cmd) to select multiple features.
- 5. *Show Tokens & Tags*: if tokens and POS tag are present on the input, you can check this box to display them.
- 6. If Auto commit is on, changes are communicated automatically. Alternatively press Commit.

Example

Corpus Viewer can be used for displaying all or some documents in corpus. In this example, we will first load *book-excerpts.tab*, that already comes with the add-on, into Corpus widget. Then we will pre-process the text into words, filter out the stopwords, create bi-grams and add POS tags (more on pre-processing in Preprocess Text). Now we want to see the results of preprocessing. In *Corpus Viewer* we can see, how many unique tokens we got and what they are (tick *Show Tokens & Tags*). Since we used also POS tagger to show part-of-speech labels, they will be displayed alongside tokens underneath the text.

Now we will filter out just the documents talking about a character Bill. We use regular expression *\bBill\b* to find the documents containing only the word Bill. You can output matching or non-matching documents, view them in another *Corpus Viewer* or further analyse them.

v: latest -

Corpus

Load a corpus of text documents, (optionally) tagged with categories.

Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

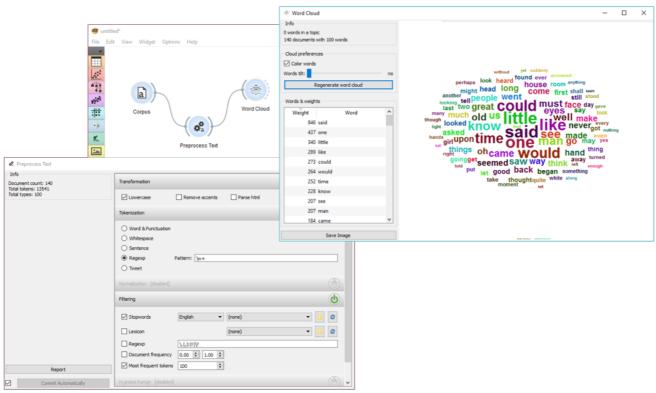
Description

Corpus widget reads text corpora from files and sends a corpus instance to its output channel. History of the most recently opened files is maintained in the widget. The widget also includes a directory with sample corpora that come pre-installed with the add-on.

The widget reads data from Excel (.xlsx), comma-separated (.csv) and native tab-delimited (.tab) files.

a Corpus	? ×
Corpus file	0 0
bookexcerpts.tab	▼ Browse 🔇 Reload
Corpus info	
Corpus of 140 documents.	
Used text features 🟮	Ignored text features 🔞
S text	D category

- 1. Browse through previously opened data files, or load any of the sample ones.
- 2. Browse for a data file.
- 3. Reloads currently selected data file.
- 4. Information on the loaded data set.
- 5. Features that will be used in text analysis.
- 6. Features that won't be used in text analysis and serve as labels or class.


You can drag and drop features between the two boxes and also change the order in which they appear.

Example

The first example shows a very simple use of **Corpus** widget. Place **Corpus** onto canvas and connect it to **Corpus Viewer**. We've used *booxexcerpts.tab* data set, which comes with the add-on, and inspected it in **Corpus Viewer**.

The second example demonstrates how to quickly visualize your corpus with Word Cloud. We could connect **Word Cloud** directly to **Corpus**, but instead we decided to apply some preprocessing with **Preprocess Text**. We are again working with *book-excerpts.tab*. We've put all text to lowercase, tok-enized (split) the text to words only, filtered out English stopwords and selected a 100 most frequent tokens.

🖉 v: latest 🕶

GeoMap

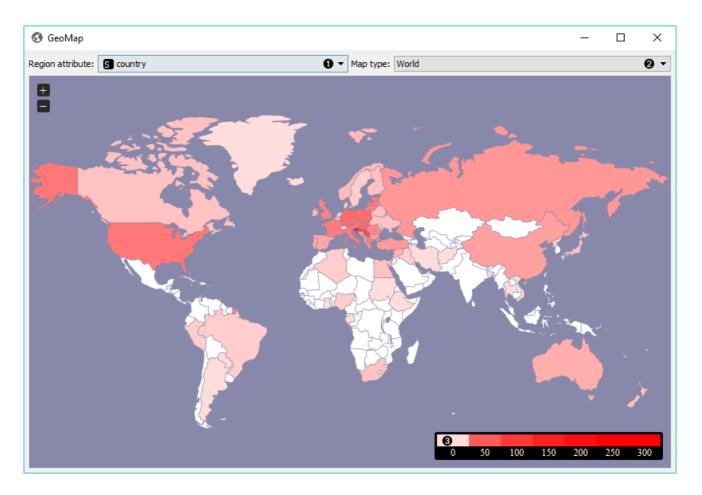
Displays geographic distribution of data.

Signals

Inputs:

• Data

Data set.

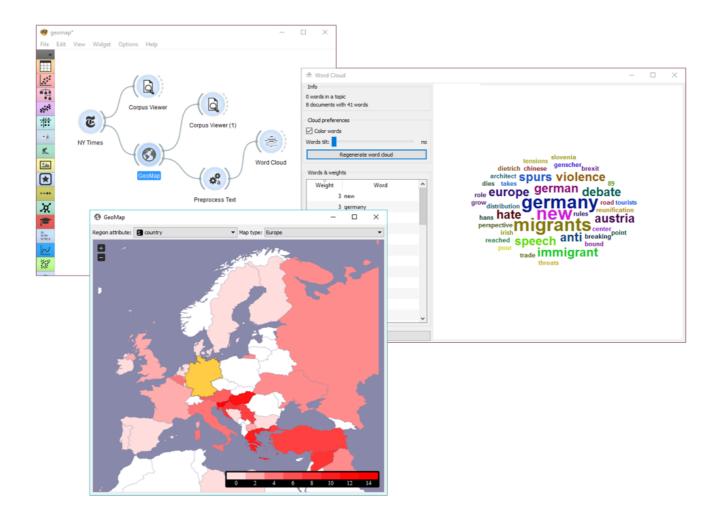

Outputs:

• Corpus

A Corpus instance.

Description

GeoMap widget shows geolocations from textual (string) data. It finds mentions of geographic names (countries and capitals) and displays distributions (frequency of mentiones) of these names on a map. It works with any Orange widget that outputs a data table and that contains at least one string attribute. The widget outputs selected data instances, that is all documents containing mentions of a selected country (or countries).



- 1. Select the meta attribute you want to search geolocations by. The widget will find all mentions of geolocations in a text and display distributions on a map.
- 2. Select the type of map you wish to display. The options are *World*, *Europe* and *USA*. You can zoom in and out of the map by pressing + and buttons on a map or by mouse scroll.
- 3. The legend for the geographic distribution of data. Countries with the boldest color are most often mentioned in the selected region attribute (highest frequency).

To select documents mentioning a specific country, click on a country and the widget will output matching documents. To select more than one country hold Ctrl/Cmd upon selection.

Example

GeoMap widget can be used for simply visualizing distributions of geolocations or for a more complex interactive data analysis. Here, we've queried NY Times for articles on Slovenia for the time period of the last year (2015-2016). First we checked the results with Corpus Viewer.

Then we sent the data to **GeoMap** to see distributiosn of geolocations by *country* attribute. The attribute already contains country tags for each article, which is why **NY Times** is great in combinations with **GeoMap**. We selected Germany, which sends all the documents tagged with Germany to the output. Remember, we queried **NY Times** for articles on Slovenia.

We can again inspect the output with **Corpus Viewer**. But there's a more interesting way of visualizing the data. We've sent selected documents to Preprocess Text, where we've tokenized text to words and removed stopwords.

Finally, we can inspect the top words appearing in last year's documents on Slovenia and mentioning also Germany with Word Cloud.

Ø v: latest ▼

NY Times

Loads data from the New York Times' Article Search API.

Signals

Inputs:

• (None)

Outputs:

• Corpus

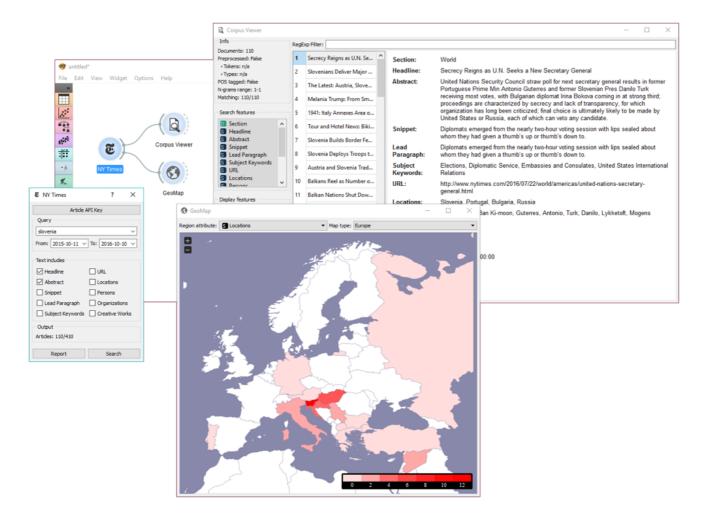
A Corpus instance.

Description

NYTimes widget loads data from New York Times' Article Search API. You can query NYTimes articles from September 18, 1851 to today, but the API limit is set to allow retrieving only a 1000 documents per query. Define which features to use for text mining, *Headline* and *Abstract* being selected by default.

To use the widget, you must enter your own API key.

8 NY Times (4%, ETA: 0: ? 🛛 🗙								
Article	Article API Key							
Query	0							
slovenia	~							
From: 2015-10-11 ~	To: 2016-10-10 V							
Text includes	0							
🗹 Headline	URL							
Abstract	Locations							
Snippet	Persons							
Lead Paragraph	Organizations							
Subject Keywords	Creative Works							
Output	4							
Articles: 20/410								
Report 🟮	Stop 🔞							


1. To begin your query, insert NY Times' Article Search API key. The key is securely saved in your system keyring service (like Credential Vault, Keychain, KWallet, etc.) and won't be deleted when clearing widget settings.

New York Times API key	?	\times
Key:		
ОК		

- 2. Set query parameters:
 - Query
 - Query time frame. The widget allows querying articles from September 18, 1851 onwards. Default is set to 1 year back from the current date.
- 3. Define which features to include as text features.
- 4. Information on the output.
- 5. Produce report.
- 6. Run or stop the query.

Example

NYTimes is a data retrieving widget, similar to Twitter and Wikipedia. As it can retrieve geolocations, that is geographical locations the article mentions, it is great in combination with GeoMap widget.

First, let's query **NYTimes** for all articles on Slovenia. We can retrieve the articles found and view the results in Corpus Viewer. The widget displays all the retrieved features, but includes on selected features as text mining features.

Now, let's inspect the distribution of geolocations from the articles mentioning Slovenia. We can do this with GeoMap. Unsuprisignly, Croatia and Hungary appear the most often in articles on Slovenia (discounting Slovenia itself), with the rest of Europe being mentioned very often as well.

🖉 v: latest 🕶

Preprocess Text

Preprocesses corpus with selected methods.

Signals

Inputs:

• Corpus

Corpus instance.

Outputs:

• Corpus

Preprocessed corpus.

Description

Preprocess Text splits your text into smaller units (tokens), filters them, runs normalization (stemming, lemmatization), creates n-grams and tags tokens with part-of-speech labels. Steps in the analysis are applied sequentially and can be turned on or off.

Preprocess Text				—		\times
Info 1					-	
Document count: 140 Total tokens: 64555	Transformation 2				U	
Unique tokens: 7392	Lowercase	Remove accents	Parse html	Remove urls		
	Tokenization 🔞				U	
	O Word & Punctuation					
	 Whitespace 					
	 Sentence 					
	Regexp	Pattern: \w+				
		WT				
	O Tweet				_	
	Normalization 4				U	
	Porter Stemmer					
	Snowball Stemmer		Language: english	l	-	
	O WordNet Lemmatizer					
	0					
	Filtering 🗿				U	
	Stopwords	English 🔻	(none)	•	ø	
	Lexicon		(none)	-	ø	
	Regexp	\. , : ! \?				
	Document frequency					
	Most frequent tokens	: 100 🗘				
	N-grams Range 🔞				U	
	Range:	1	₽		•	
	POS Tagger				U	
	Averaged Perceptron					
	O Treebank POS Tagger	r (MaxEnt)				
Report 🔞	 Stanford POS Tagger 	(none)		Model	Tagger	
Commit Automatically		(~

- 1. **Information on preprocessed data**. *Document count* reports on the number of documents on the input. *Total tokens* counts all the tokens in corpus. *Unique tokens* excludes duplicate tokens and reports only on unique tokens in the corpus.
- 2. Transformation transforms input data. It applies lowercase transformation by default.
 - Lowercase will turn all text to lowercase.
 - Remove accents will remove all diacritics/accents in text.

 $\text{na\"ive} \rightarrow \text{na}\text{ive}$

• Parse html will detect html tags and parse out text only.

<a href...>Some text \rightarrow Some text

• *Remove urls* will remove urls from text.

This is a http://orange.biolab.si/ url. \rightarrow This is a url.

3. Tokenization is the method of breaking the text into smaller components (words, sentences, bigrams).

- Word & Punctuation will split the text by words and keep punctuation symbols. This example. \rightarrow (This), (example), (.)
- Whitespace will split the text by whitespace only.

This example. \rightarrow (This), (example.)

• Sentence will split the text by fullstop, retaining only full sentences.

This example. Another example. \rightarrow (This example.), (Another example.)

- Regexp will split the text by provided regex. It splits by words only by default (omits punctuation).
- *Tweet* will split the text by pre-trained Twitter model, which keeps hashtags, emoticons and other special symbols.

This example. :-) #simple \rightarrow (This), (example), (.), (:-)), (#simple)

- Normalization applies stemming and lemmatization to words. (I've always loved cats. → I have alway love cat.) For languages other than English use Snowball Stemmer (offers languages available in its NLTK implementation).
 - Porter Stemmer applies the original Porter stemmer.
 - Snowball Stemmer applies an improved version of Porter stemmer (Porter2). Set the language for normalization, default is English.
 - WordNet Lemmatizer applies a networks of cognitive synonyms to tokens based on a large lexical database of English.
- 5. **Filtering** removes or keeps a selection of words.
 - Stopwords removes stopwords from text (e.g. removes 'and', 'or', 'in'...). Select the language to filter by, English is set as default. You can also load your own list of stopwords provided in a simple *.txt file with one stopword per line.

Click 'browse' icon to select the file containing stopwords. If the file was properly loaded, its name will be displayed next to pre-loaded stopwords. Change 'English' to 'None' if you wish to filter out only the provided stopwords. Click 'reload' icon to re-load the list of stopwords.

- *Lexicon* keeps only words provided in the file. Load a *.txt file with one word per line to use as lexicon. Click 'reload' icon to reload the lexicon.
- *Regexp* removes words that match the regular expression. Default is set to remove punctuation.
- Document frequency keeps tokens that appear in not less than and not more than the specified number / percentage of documents. If you provide integers as parameters, it keeps only tokens that appear in the specified number of documents. E.g. DF
 = (3, 5) keeps only tokens that appear in 3 or more and 5 or less documents. If you provide floats as parameters, it keeps only tokens that appear in the specified per-

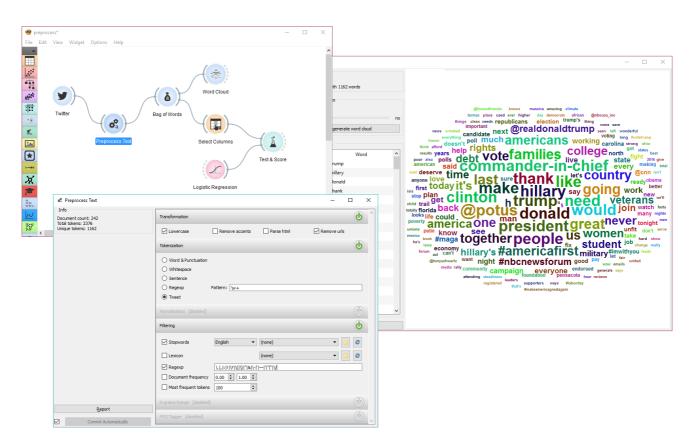
centage of documents. E.g. DF = (0.3, 0.5) keeps only tokens that appear in 30% to 50% of documents. Default returns all tokens.

- *Most frequent tokens* keeps only the specified number of most frequent tokens. Default is a 100 most frequent tokens.
- 6. **N-grams Range** creates n-grams from tokens. Numbers specify the range of n-grams. Default returns one-grams and two-grams.
- 7. **POS Tagger** runs part-of-speech tagging on tokens.
 - Averaged Perceptron Tagger runs POS tagging with Matthew Honnibal's averaged perceptron tagger.
 - Treebank POS Tagger (MaxEnt) runs POS tagging with a trained Penn Treebank model.
 - Stanford POS Tagger runs a log-linear part-of-speech tagger designed by Toutanova et al. Please download it from the provided website and load it in Orange.
- 8. Produce a report.
- 9. If *Commit Automatically* is on, changes are communicated automatically. Alternatively press *Commit*.

Note: Preprocess Text applies preprocessing steps in the order they are listed. This means it will first transform the text, then apply tokenization, POS tags, normalization, filtering and finally constructs n-grams based on given tokens. This is especially important for WordNet Lemmatizer since it requires POS tags for proper normalization.

Useful Regular Expressions

Here are some useful regular expressions for quick filtering:


\bword\b	matches exact word
\w+	matches only words, no punctuation
b(B b) w+b	matches words beginning with the letter b
\w{4,}	matches words that are longer than 4 characters
b/w+(Y y)/b	matches words ending with the letter y

Examples

In the first example we will observe the effects of preprocessing on our text. We are working with *bookexcerpts.tab* that we've loaded with Corpus widget. We have connected **Preprocess Text** to **Corpus** and retained default preprocessing methods (lowercase, per-word tokenization and stopword removal). The only additional parameter we've added as outputting only the first 100 most frequent tokens. Then we connected **Preprocess Text** with Word Cloud to observe words that are the most frequent in our text. Play around with different parameters, to see how they transform the output.

			* Word Cloud	- 🗆 X
Untitles File Edit	P* View Widget Options Help (Corpus Preprocess Text	×	Info O words in a topic 140 documents with 100 words Cloud preferences Color words Words tit: no Regenerate word doud Words & weights Words Words	suddenly yrt enough handd 8 aballquite ever, found every right heard first may full even turned still even turned techting head long wentupon
18	of Preprocess Text		- • ×	made oheyes wellway day yes man face room set
*	Info Document count: 140	Transformation	^ ()	might heard first may found avery addition head body wentupon stiment turned addition head look people Could like must asked stood good go tell one like came looked swe weld girb ack time said know much many put get saw us little see two say thing
1	Total tokens: 13541 Unique tokens: 100	Lowercase Remove accents P	arse html Remove urls	put get Saw us ittle Salo know hand s seemed in little lit
*		Tokenization	٢	moment house old Would things along
× 💼		Word & Punctuation Whitespace Sentence Regrap Pattern: y+ Tweet		though began never come think something white though two let gotgoing anything perhaps take took answered
22		Normalization [disabled]		
-		Filtering	Ó	
		Stopwords English • (none	.) 🔹 🖬 🚺	
		Lexicon (none	•) 🔹 🖸	
		Regexp		
		Document frequency 0.00 1.00 0 100 0		
		N-grams Range [disabled]		
	Report		6	
	Commit Automatically	POS Tagger [disabled]		

The second example is slightly more complex. We first acquired our data with Twitter widget. We quired the internet for tweets from users @HillaryClinton and @realDonaldTrump and got their tweets from the past two weeks, 242 in total.

In **Preprocess Text** there's *Tweet* tokenization available, which retains hashtags, emojis, mentions and so on. However, this tokenizer doesn't get rid of punctuation, thus we expanded the Regexp filtering with symbols that we wanted to get rid of. We ended up with word-only tokens, which we displayed in Word Cloud. Then we created a schema for predicting author based on tweet content, which is explained in more details in the documentation for Twitter widget.

Pubmed

Fetch data from PubMed journals.

Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

Description

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals, and online books. The widget allows you to query and retrieve these entries. You can use regular search or construct advanced queries.

🛤 Pubmed	?	×
Email: mail@mail.com		0 ~
Regular search Advanced search		0
Author:		
From: 1800-01-01 v to: 2016-10-07	\sim	
Query: orchid	\sim	
Number of retrievable records for this sear	ch query	: 1482
Find records		0
Text includes		0
Authors		
Article title		
Mesh headings		
Abstract		
URL URL		
Retrieve 1000 🔷 rec	ords fron	n 1482.
Retrieve records		0
Number of records retrieved: 1000		

- 1. Enter a valid e-mail to retrieve queries.
- 2. Regular search:
 - Author: queries entries from a specific author. Leave empty to query by all authors.
 - *From*: define the time frame of publication.
 - Query: enter the query.

Advanced search: enables you to construct complex queries. See PubMed's website to learn how to construct such queries. You can also copy-paste constructed queries from the website.

- 3. *Find records* finds available data from PubMed matching the query. Number of records found will be displayed above the button.
- 4. Define the output. All checked features will be on the output of the widget.
- 5. Set the number of record you wish to retrieve. Press *Retrieve records* to get results of your query on the output. Below the button is an information on the number of records on the output.

Example

PubMed can be used just like any other data widget. In this example we've queried the database for records on orchids. We retrieved 1000 records and kept only 'abstract' in our meta features to limit the construction of tokens only to this feature.

			Word Cloud	- 🗆 X
Constituted for the former of	View Widget Options Help	Word Cloud	Info 0 words in a topic 1000 documents with 15144 words Cloud preferences Color words Words tit:	seeds expression populations diversity and though the studied many specific long data selection for the second data selection
2 27 27 27 27 27 27 27 27 27 27 27 27 27	Text includes		436 mycorhizal 403 populations 397 using 379 fungi 378 gene ✓ Save Image	bee inguis background flowering phylogenetic significant attems provide make phalaenopsis range analyses significanty genera groups clade presene small markers group distribution highly several taxa groups clade success changes large production factors model induced information respectively habitat morphologicat developed associations
	Retrieve 1000 records from 1482. Retrieve records Number of records retrieved: 1000			и

We used Preprocess Text to remove stopword and words shorter than 3 characters (regexp \b\w{1,2}\b). This will perhaps get rid of some important words denoting chemicals, so we need to be careful with what we filter out. For the sake of quick inspection we only retained longer words, which are displayed by frequency in Word Cloud.

🖉 v: latest 🕶

Topic Modelling

Topic modelling with Latent Diriclet Allocation, Latent Semantic Indexing or Hierarchical Dirichlet Process.

Signals

Inputs:

• Corpus

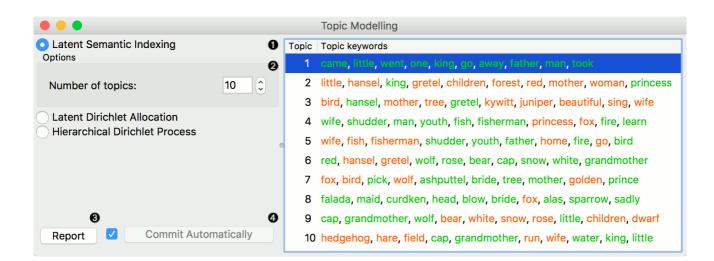
Corpus instance.

Outputs:

• Data

Data with topic weights appended.

• Topics


Selected topics with word weights.

• All Topics

Topic weights by tokens.

Description

Topic Modelling discovers abstract topics in a corpus based on clusters of words found in each document and their respective frequency. A document typically contains multiple topics in different proportions, thus the widget also reports on the topic weight per document.

- 1. Topic modelling algorithm:
 - Latent Semantic Indexing
 - Latent Dirichlet Allocation
 - Hierarchical Dirichlet Process
- 2. Parameters for the algorithm. LSI and LDA accept only the number of topics modelled, with the default set to 10. HDP, however, has more parameters. As this algorithm is computationally very demanding, we recommend you to try it on a subset or set all the required parameters in advance and only then run the algorithm (connect the input to the widget).
 - First level concentration (γ): distribution at the first (corpus) level of Dirichlet Process
 - Second level concentration (α): distribution at the second (document) level of Dirichlet Process
 - The topic Dirichlet (α): concentration parameter used for the topic draws
 - Top level truncation (T): corpus-level truncation (no of topics)
 - Second level truncation (K): document-level truncation (no of topics)
 - Learning rate (κ): step size
 - Slow down parameter (т)
- 3. Produce a report.
- 4. If *Commit Automatically* is on, changes are communicated automatically. Alternatively press *Commit.*

Example

In the first example, we present a simple use of the **Topic Modelling** widget. First we load *grimm-tales-selected.tab* data set and use Preprocess Text to tokenize by words only and remove stopwords. Then we connect **Preprocess Text** to **Topic Modelling**, where we use a simple *Latent Semantic In-dexing* to find 10 topics in the text.

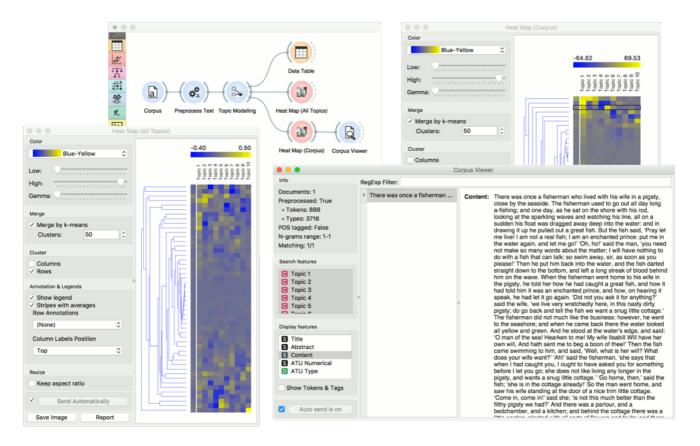
LSI provides both positive and negative weights per topic. A positive weight means the word is highly representative of a topic, while a negative weight means the word is highly unrepresentative of a topic (the less it occurs in a text, the more likely the topic). Positive words are colored green and negative words are colored red.

We then select the first topic and display the most frequent words in the topic in Word Cloud. We also connected **Preprocess Text** to **Word Cloud** in order to be able to output selected documents. Now we can select a specific word in the word cloud, say *little*. It will be colored red and also highlighted in the word list on the left.

Now we can observe all the documents containing the word *little* in Corpus Viewer.

In the second example, we will look at the correlation between topics and words/documents. Connect **Topic Modelling** to **Heat Map**. Ensure the link is set to *All Topics - Data*. **Topic Modelling** will output a matrix of topic weights by words from text (more precisely, tokens).

We can observe the output in a **Data Table**. Tokens are in rows and retrieved topics in colums. Values represent how much a word is represented in a topic.


• • •				Data	a Table							
Info												
3716 instances (no missing		Word	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
values)	1	_jug	0.000	-0.000	0.000	-0.000	0.000	-0.000	0.000	0.001	0.000	0.000
10 features (no missing values)	2	_my_	0.001	-0.001	-0.003	0.003	0.002	0.001	0.010	-0.006	-0.005	0.003
No target variable.	3	abide	0.002	-0.003	0.001	0.004	0.001	0.001	0.000	-0.003	-0.001	-0.003
1 meta attribute (no missing	4	able	0.017	-0.001	0.011	-0.001	-0.015	-0.004	-0.024	-0.009	-0.014	-0.011
values)	5	aboard	0.000	0.000	0.000	-0.000	0.000	-0.000	-0.000	0.000	-0.001	-0.000
	6	abode	0.002	-0.003	0.001	0.003	0.001	0.001	0.000	-0.002	-0.001	-0.003
Variables	7	abominably	0.000	-0.000	0.000	0.001	-0.000	-0.001	-0.003	-0.000	-0.001	0.001
	8	absence	0.000	-0.000	0.000	0.000	0.000	-0.000	-0.000	0.002	-0.000	0.000
Show variable labels (if present)	9	abundance	0.000	-0.000	0.000	0.001	-0.000	-0.001	-0.003	-0.000	-0.001	0.001
Color by instance classes	10	accept	0.000	0.000	0.000	0.000	-0.000	-0.000	0.000	0.000	-0.000	-0.000
	11	accepted	0.000	0.000	-0.000	-0.002	0.002	0.000	-0.002	0.001	-0.004	0.016
Selection	12	accomplish	0.001	-0.001	0.001	-0.002	0.001	-0.001	-0.005	-0.000	-0.004	0.016
Select full rows	13	accomplished	0.000	-0.000	0.000	-0.001	-0.001	0.000	0.000	-0.001	0.000	0.000
-	14	accord	0.003	-0.003	0.005	-0.008	-0.008	-0.002	0.000	-0.001	-0.001	0.000
	15	according	0.001	0.000	0.001	0.001	0.001	-0.000	0.000	0.002	-0.000	0.000
	16	accordingly	0.001	-0.001	0.002	-0.000	-0.001	-0.002	-0.004	0.000	-0.001	-0.000
Restore Original Order	17	account	0.004	-0.002	0.000	0.005	-0.001	-0.009	-0.009	-0.010	0.013	0.003
Report	18	accursed	0.001	0.002	0.000	0.001	0.003	-0.010	0.002	-0.003	0.010	0.002
	19	accused	0.001	-0.001	-0.000	0.000	-0.000	0.000	0.001	0.000	-0.000	-0.001
Send Automatically	20	accustomed	0.000	0.000	-0.000	-0.002	0.002	0.000	-0.002	0.001	-0.004	0.016

To visualize this matrix, open **Heat Map**. Select *Merge by k-means* and *Cluster - Rows* to merge similar rows into one and sort them by similarity, which makes the visualization more compact.

In the upper part of the visualization, we have words that highly define topics 1-3 and in the lower part those that define topics 5 and 10.

We can similarly observe topic representation across documents. We connect another **Heat Map** to **Topic Modelling** and set link to *Corpus - Data*. We set *Merge* and *Cluster* as above.

In this visualization we see how much is a topic represented in a document. Looks like Topic 1 is represented almost across the entire corpus, while other topics are more specific. To observe a specific set of document, select either a clustering node or a row in the visualization. Then pass the data to Corpus Viewer.

Twitter

Fetching data from The Twitter Search API.

Signals

Inputs:

• (None)

Outputs:

• Corpus

A Corpus instance.

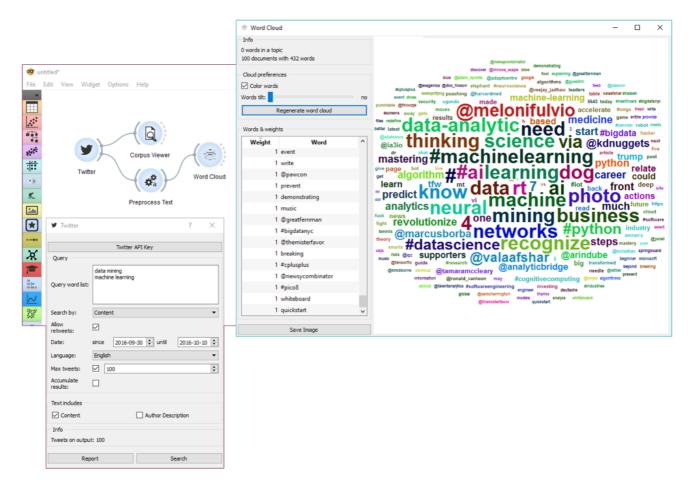
Description

Twitter widget enables querying tweets through Twitter API. You can query by content, author or both and accummulate results should you wish to create a larger data set. The widget only supports REST API and allows queries for up to two weeks back.

Y Twitter		?	Х
			-
	Twitter API Key		0
Query			0
Query word list:	Multiple lines are automatically joined w	iith OR.	
Search by:	Content		•
Allow retweets:			
Date:	since 2016-09-30 🖨 until 201	16-10-10	-
Language:	Any		•
Max tweets:	100		-
Accumulate results:			
Text includes			0
Content	Author Description	ı	
Info			0
Tweets on outpu	it: 0		
Rep	oort 🚯 Search		0

1. To begin your queries, insert Twitter key and secret. They are securely saved in your system keyring service (like Credential Vault, Keychain, KWallet, etc.) and won't be deleted when clearing widget settings. You must first create a Twitter app to get API keys.

III Twitter API Credentials	?	×
Key:		
Secret:		
ОК		


- 2. Set query parameters:
 - *Query word list*: list desired queries, one per line. Queries are automatically joined by OR.
 - Search by: specify whether you want to search by content, author or both. If searching by author, you must enter proper Twitter handle (without @) in the query list.
 - *Allow retweets*: if 'Allow retweets' is checked, retweeted tweets will also appear on the output. This might duplicate some results.
 - *Date*: set the query time frame. Twitter only allows retrieving tweets from up to two weeks back.
 - Language: set the language of retrieved tweets. Any will retrieve tweets in any

language.

- *Max tweets*: set the top limit of retrieved tweets. If box is not ticked, no upper bound will be set widget will retrieve all available tweets.
- *Accumulate results*: if 'Accumulate results' is ticked, widget will append new queries to the previous ones. Enter new queries, run *Search* and new results will be appended to the previous ones.
- 3. Define which features to include as text features.
- 4. Information on the number of tweets on the output.
- 5. Produce report.
- 6. Run query.

Examples

First, let's try a simple query. We will search for tweets containing either 'data mining' or 'machine learning' in the content and allow retweets. We will further limit our search to only a 100 tweets in English.

First, we're checking the output in Corpus Viewer to get the initial idea about our results. Then we're preprocessing the tweets with lowercase, url removal, tweet tokenizer and removal of stopword and punctuation. The best way to see the results is with Word Cloud. This will display the most popular words in field of data mining and machine learning in the past two weeks.

Our next example is a bit more complex. We're querying tweets from Hillary Clinton and Donald Trump from the presidential campaign 2016.

Then we've used Preprocess Text to get suitable tokens on our output. We've connected **Preprocess Text** to Bag of Words in order to create a table with words as features and their counts as values. A quick check in **Word Cloud** gives us an idea about the results.

Now we would like to predict the author of the tweet. With **Select Columns** we're setting 'Author' as our target variable. Then we connect **Select Columns** to **Test & Score**. We'll be using **Logistic Regression** as our learner, which we also connect to **Test & Score**.

We can observe the results of our author predictions directly in the widget. AUC score is quite ok. Seems like we can to some extent predict who is the author of the tweet based on the tweet content.

v: latest

Wikipedia

Fetching data from MediaWiki RESTful web service API.

Signals

Inputs:

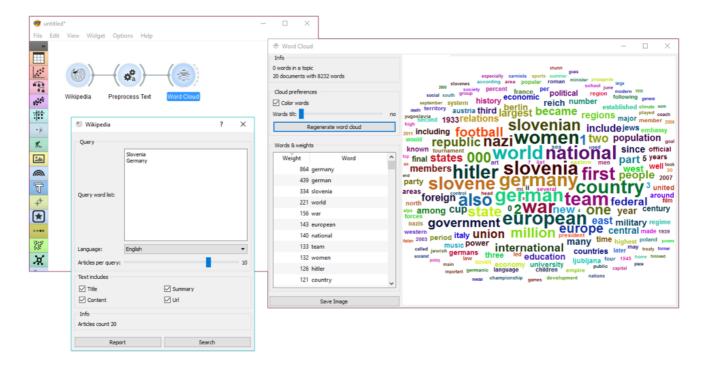
• (None)

Outputs:

• Corpus

A Corpus instance.

Description


Wikipedia widget is used to retrieve texts from Wikipedia API and it is useful mostly for teaching and demonstration.

🗐 Wikipedia				?	×
Query					0
Query word list:	Slovenia Germany				
Language:	English				•
Articles per query:					10
Text includes					0
🗹 Title		Summary			
Content		🗹 Url			
Info					0
Articles count 20					
Repor	t 🔮		Search		6

- 1. Query parameters:
 - Query word list, where each query is listed in a new line.
 - Language of the query. English is set by default.
 - Number of articles to retrieve per query (range 1-25). Please note that querying is done recursively and that disambiguations are also retrieved, sometimes resulting in a larger number of queries than set on the slider.
- 2. Select which features to include as text features.
- 3. Information on the output.
- 4. Produce a report.
- 5. Run query.

Example

This is a simple example, where we use **Wikipedia** and retrieve the articles on 'Slovenia' and 'Germany'. Then we simply apply default preprocessing with Preprocess Text and observe the most frequent words in those articles with Word Cloud.

Wikipedia works just like any other corpus widget (NY Times, Twitter) and can be used accordinaly.

Ø v: latest ▼

Word Cloud

Generates a word cloud from corpus.

Signals

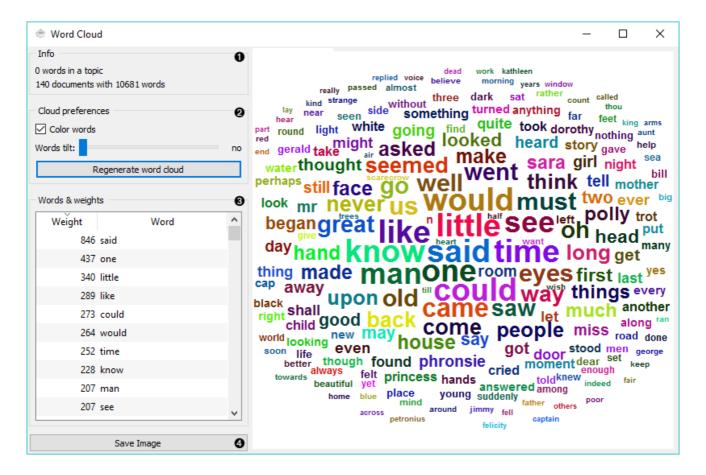
Inputs:

• Topic

Selected topic.

• Corpus

A Corpus instance.

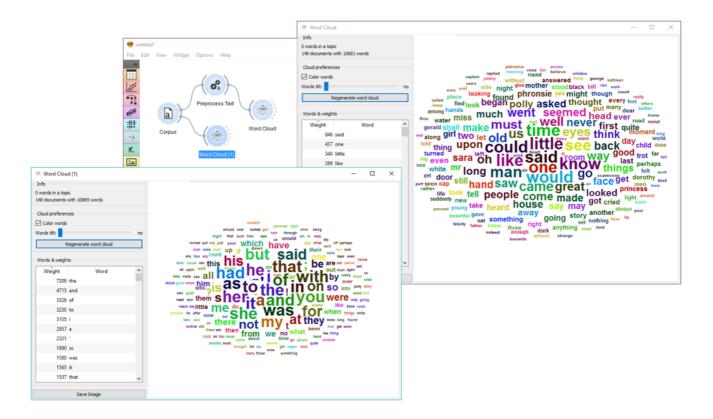

Outputs:

• Corpus

Documents that match the selection.

Description

Word Cloud displays tokens in the corpus, their size denoting the frequency of the word in corpus. Words are listed by their frequency (weight) in the widget. The widget outputs documents, containing selected tokens from the word cloud.



- 1. Information on the input.
 - number of words (tokens) in a topic
 - number of documents and tokens in the corpus
- 2. Adjust the plot.
 - If *Color words* is ticked, words will be assigned a random color. If unchecked, the words will be black.
 - *Word tilt* adjust the tilt of words. The current state of tilt is displayed next to the slider ('no' is the default).
 - Regenerate word cloud plot the cloud anew.
- Words & weights displays a sorted list of words (tokens) by their frequency in the corpus or topic. Clicking on a word will select that same word in the cloud and output matching documents. Use *Ctrl* to select more than one word. Documents matching ANY of the selected words will be on the output (logical OR).
- 4. Save Image saves the image to your computer in a .svg or .png format.

Example

Word Cloud is an excellent widget for displaying the current state of the corpus and for monitoring the effects of preprocessing.

Use Corpus to load the data. Connect Preprocess Text to it and set your parameters. We've used defaults here, just to see the difference between the default preprocessing in the **Word Cloud** widget and the **Preprocess Text** widget.

We can see from the two widgets, that **Preprocess Text** displays only words, while default preprocessing in the **Word Cloud** tokenizes by word and punctuation.

Ø v: latest ▼

Word Enrichment

Word enrichment analysis for selected documents.

Signals

Inputs:

• Data

Corpus instance.

Selected Data

Selected instances from corpus.

Outputs:

• (None)

Description

Word Enrichment displays a list of words with lower p-values (higher significance) for a selected subset compared to the entire corpus. Lower p-value indicates a higher likelihood that the word is significant for the selected subset (not randomly occurring in a text). FDR (False Discovery Rate) is linked to p-value and reports on the expected percent of false predictions in the set of predictions, meaning it account for false positives in list of low p-values.

🐲 Word Enrichment				—	\times
Info 🛛 🔒	Word	p-value	FDR	^	
Cluster words: 10681 Selected words: 5257 After filtering: 21	girl	2.7e-11	1.5e-07		
	oh	2.7e-11	1.5e-07		
	asked	1.5e-06	3.5e-03		
	cried	1.7e-06	3.5e-03		
Filter 2 □ p-value 0.0100 ♀ ✓ FDR 0.2000 ♀	miss	1.1e-06	3.5e-03		
	sara	2.5e-06	4.5e-03		
	child	3.6e-06	5.5e-03		
		1.6e-05	0.02187		
	get	2.1e-05	0.02493		
		3.0e-05	0.03171		
	anything		0.04506		
	anxiously		0.05435		
	bill	6.6e-05	0.05435		
	quite	7.3e-05	0.05533		
		1.2e-04	0.08280		
	hurt	1.2e-04	0.08280		
	big	1.6e-04	0.08763		
	exclaimed	1.5e-04	0.08763		
	n	1.5e-04	0.08763		
	magic	3.2e-04	0.16234		
	pink	3.1e-04	0.16234		

- 1. Information on the input.
 - Cluster words are all the tokens from the corpus.
 - Selected words are all the tokens from the selected subset.
 - After filtering reports on the enriched words found in the subset.
- 2. Filter enables you to filter by:
 - p-value
 - false discovery rate (FDR)

Example

In the example below, we're retrieved recent tweets from the 2016 presidential candidates, Donald Trump and Hillary Clinton. Then we've preprocessed the tweets to get only words as tokens and to remove the stopwords. We've connected the preprocessed corpus to Bag of Words to get a table with word counts for our corpus.

	🤓 untitled"				1 ×	7				
	File Edit View Widget Options Help					/ord Enrichment		-		×
	Twitter Preprocess Text	Corpus V Bag of Words		er Word Enrichment	Select After Filter P	value 0.0100 🕏	Word p-value maga 4.6e-10 thank 3.4e-10 americafirst 1.9e-06 clinton 4.4e-06 join 8.1e-06 debstes2016 2.8e-05 billaryclinton 2.8e-05 bill 1.1e-04 crooked 1.1e-04 tickets 1.1e-04		7 3 3 3 3 3 3 3 3 5 6 6 6	
Y Twitter	? ×						movement 1.9e-04 great 9.6e-04	0.0262	2	
	Twitter API Key						supporters 1.5e-03 wow 1.5e-03	0.1640	8	
Query							wow 1.5e-05	0.1040	•	
Query word list:	realDonaldTrump HillaryClinton	Corpus Viewer							-	
		Documents: 354	Reg	Exp Filter: Trump						
Search by:	Author 👻	Preprocessed: True • Tokens: 4309	1	Wow, did you just	Author	<u> </u>				
Allow retweets:		• Types: 1632	2	Join the MOVEME	Conten		just hear Bill Clinton's st happy. As I have been sa			
Date:	since 2016-09-25 🗢 until 2016-10-05 🗣	POS tagged: False N-grams range: 1-1	3	Thank you ARIZON	Date:	2016-10-04 21	1:55:55			
Language:	English	Matching: 98/354	4	My childcare plan						
Max tweets:	100 \$	Search features	5	I will be watching t						
Accumulate results:		Author Author Content	6	Join me in Reno, N						
Text includes		Date D Language	7	Join me in Reno, N						
Content	Author Description		8	Thank you Colorad						
Info			9	We must bring the						
Tweets on output	t: 354	Display features	10	Join me in Henders						
Rep	oort Search	Author Author Content	11	Just announced th						
		Date Language	12	Melania and I exten						
		C Location Y	13	Bernie should pull						
		Show Tokens & Tags	14	"@trumplican2016:						
			15	I have created tens						
		Auto send is on	16	i know our comple 🗸						

Then we've connected Corpus Viewer to **Bag of Words** and selected only those tweets that were published by Donald Trump. See how we marked only the *Author* as our *Search feature* to retrieve those tweets.

Word Enrichment accepts two inputs - the entire corpus to serve as a reference and a selected subset from the corpus to do the enrichment on. First connect **Corpus Viewer** to **Word Enrichment** (input Matching Docs \rightarrow Selected Data) and then connect **Bag of Words** to it (input Corpus \rightarrow Data). In the **Word Enrichment** widget we can see the list of words that are more significant for Donald Trump than they are for Hillary Clinton.

Ø v: latest ▼

Network

Network Analysis

Statistical analysis of network data.

Signals

Inputs:

Network

An instance of Network Graph.

• Items

Properties of a network file.

Outputs:

Network

An instance of Network Graph with appended information.

• Items

New properties of a network file.

Description

Network Analysis widget computes node-level and graph-level summary statistics for the network. It can output a network with the new computed statistics appended or an extended item data table.

Graph level

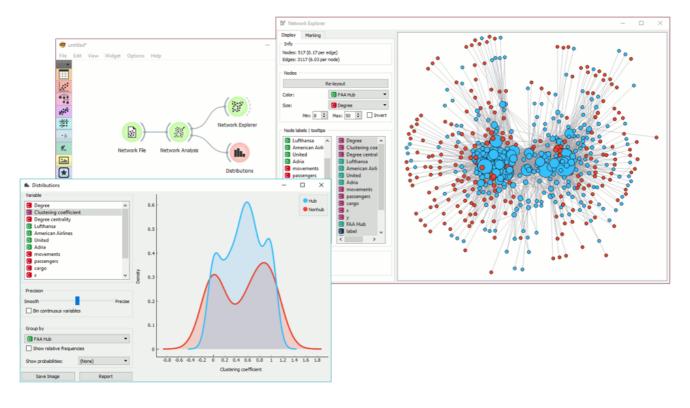
※ Network Analysis			?	×				
Graph-level indices	Node-level indices							
✓ Number of nodes				517				
Number of edges				3117				
Average degree				12.058				
Diameter								
Radius								
Average shortest p	ath length							
Density								
Degree assortativity coefficient								
Degree pearson correlation coefficient								
Estrada index								
Graph clique number								
Graph number of cliques								
Graph transitivity								
Average clustering								
Number of connect	-							
	connected component							
	connected components							
Number of attractir	ig components							
Commit automatically	/							
Com	mit	Cancel						

- Number of nodes: number of vertices in a network.
- Number of edges: number of connections in a network.
- Average degree: average number of connections per node.
- Diameter: maximum eccentricity of the graph.
- Radius: minimum eccentricity of the graph.
- Average shortest path length: expected distance between two nodes in the graph.
- Density: ratio between actual number of edges and maximum number of edges (fully connected graph).
- Degree assortativity coefficient: correlations between nodes of similar degree.
- Degree pearson correlation coefficient: same as degree assortativity coefficient but with a scipy.stats.pearsonr function.
- Estrada index: Estrada index of the graph.
- Graph clique number: number of nodes in the largest clique (size of a clique).
- Graph number of cliques: number of cliques (subsets of nodes, where every two nodes are connected).
- Graph transitivity: ratio of all possible triangles in the network (if node A connects to B and C, how often are B and C connected in the graph).

- Average clustering coefficient: average of the local clustering coefficients of all the vertices.
- Number of connected components: number of separate networks in a graph
- Number of strongly connected components: parts of network where every vertex is reachable from every other vertex (for directed graphs only).
- Number of weakly connected components: parts of network where replacing all of its directed edges with undirected edges produces a connected (undirected) graph (for directed graphs only).
- Number of attracting components: node in a direct graph that a random walker in a graph cannot leave (for directed graphs only).

Node level

Metwork Analysis An	?	×
Graph-level indices Node-level indices		
Degree		
In-degree		
Out-degree		
Average neighbor degree		
Clustering coefficient		
Number of triangles		
Squares dustering coefficient		
Number of cliques		
Degree centrality		
In-egree centrality		
Out-degree centrality		
Closeness centrality		
Betweenness centrality		
Information centrality		
Random-walk betweenness centrality		
Approx. random-walk betweenness centrality		
Eigenvector centrality		
Eigenvector centrality (NumPy)		
Load centrality		
Eccentricity		
Closeness vitality		
Commit automatically		
Commit Cancel		


- Degree: number of edges per node.
- In-degree: number of incoming edges in a directed graph.
- Out-degree: number of outgoing edges in a directed graph.
- Average neighbor degree: average degree of neighboring nodes.

- Clustering coefficient: ratio of triangles in a node neighborhood to all possible triangles.
- Number of triangles: number of triangles that include a node as one vertex.
- Squares clustering coefficient: ratio of possible squares that exist for a node.
- Number of cliques: number of complete (fully connected) subgraphs in a network.
- Degree centrality: ratio of other nodes connected to the node.
- In-degree centrality: ratio of incoming edges to a node in a directed graph.
- Out-degree centrality: ratio of outgoing edges from a node in directed graph.
- Closeness centrality: distance to all other nodes.
- Betweenness centrality: measure of control a node exerts over the interaction of other nodes in the network.
- Information centrality: proportion of total information flow that is controlled by each node.
- Random-walk betweenness centrality: number of times a node would be on the path between two nodes if employing a random walk.
- Approx. random-walk betweenness centrality: approximate current-flow betweenness centrality.
- Eigenvector centrality: score nodes by their connections to high-scoring nodes (measure of centrality of a node based on its connection to other central nodes).
- Eigenvector centrality (NumPy): eigenvector centrality with NumPy eigenvalue solver.
- Load centrality: ratio of all shortest paths that lead through the node.
- Core number: largest value k of a k-core containing that node.
- Eccentricity: maximum distance between the node and every other node in the network.
- Closeness vitality: change in the sum of distances for all node pairs when excluding that node.

If *Commit automatically* is on, new information will be commited automatically. Alternatively, press *Commit*.

Example

This simple example shows how **Network Analysis** can enrich the workflow. We have used *airtraffic.net* as our input network from *Network File* and sent it to **Network Analysis**. We've decided to compute *density*, *number of cliques* and *graph transitivity* at graph level and *degree*, *clustering coefficient* and *degree centrality* at node level. The widget instantly computes score for graph-level methods and displays them in the widget. It also computes scores for node-level methods, appends them as additional columns and outputs them as *Items*.

We can use node-level scores with **Distributions** widget to observe, say, clustering coefficient distribution or set the size of nodes in *Network Explorer* to *Degree*.

🖉 v: latest 🕶

Network Clustering

Detect clusters in a network.

Signals

Inputs:

• Network

An instance of Network Graph.

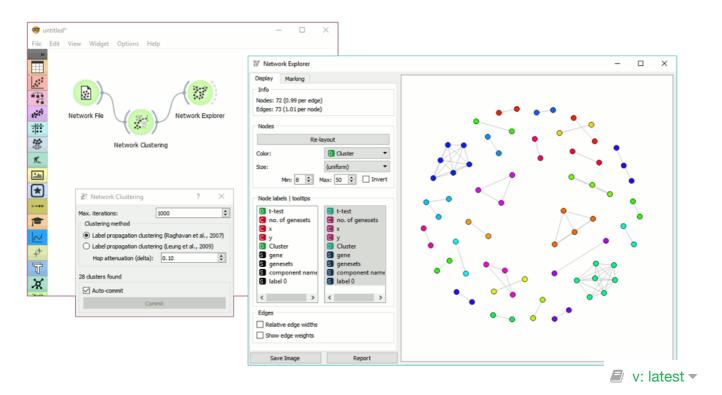

Outputs:

Network

An instance of Network Graph with clustering information appended.

Description

Network Clustering widget finds clusters in a network. Clustering works with two algorithms, one from Raghavan et al. (2007), which uses label propagation to find appropriate clusters, and one from Leung et al. (2009), which builds upon the work from Raghavan and adds hop attenuation as a parameters for cluster formation.



1. Clustering parameters: - Max. iterations: maximum number of iteration allowed for the algorithm to run (can converge before reaching the maximum). - Clustering method:

- Label propagation clustering (Raghavan et al., 2007)
- Label propagation clustering (Leung et al., 2009) with hop attenuation.
- 2. Information on the number of clusters found.
- 3. If *Auto-commit* is ticked, results will be automatically sent to the output. Alternatively, press *Commit*.

Example

Network Clustering can help you uncover cliques and highly connected groups in a network. First, we will use *Network File* to load *leu_by_genesets.net* data set. Then we will pass the network through **Network Clustering**. The widget found 28 clusters in a network. To visualize the results, use *Network Explorer* and set *Color* attribute to *Cluster*. This will color network nodes with the corresponding cluster color - this is a great way to visualize highly connected groups in dense networks.

Network Explorer

Visually explore the network and its properties.

Signals

Inputs:

Network

An instance of Network Graph.

Node Subset

A subset of vertices.

Node Data

Information on vertices.

Node Distances

Data on distances between nodes.

Outputs:

• Selected sub-network

A network of selected nodes.

Distance Matrix

Distance matrix.

Selected Items

Information on selected vertices.

Highlighted Items

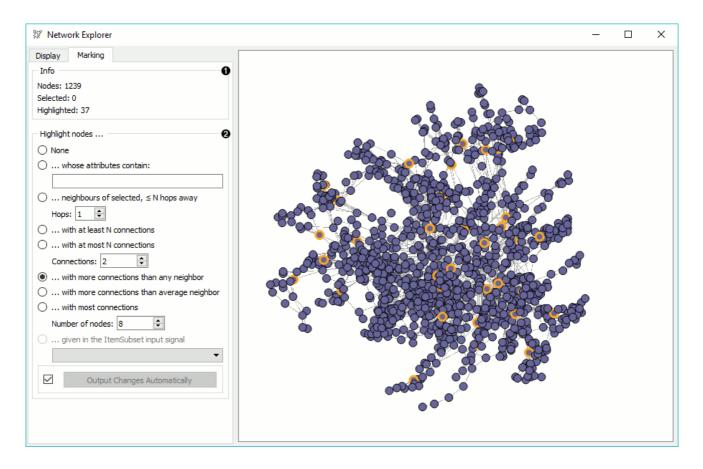
Information on highlighted vertices.

Remaining Items


Information on remaining items (not selected or highlighted).

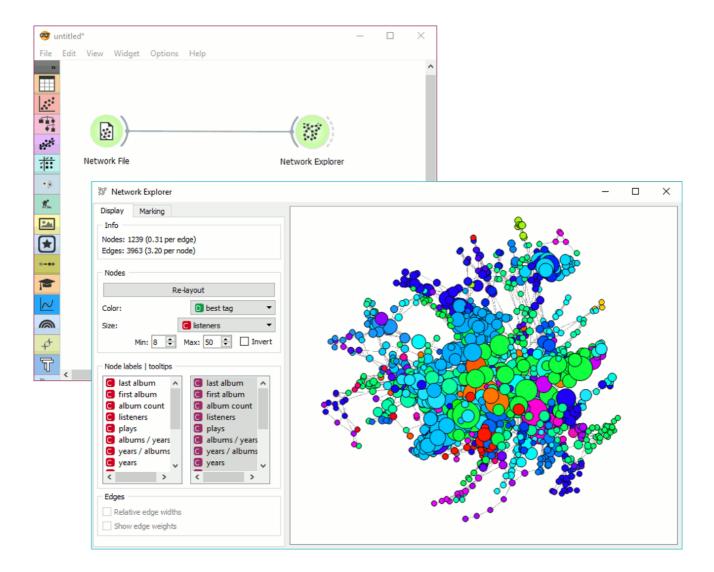
Description

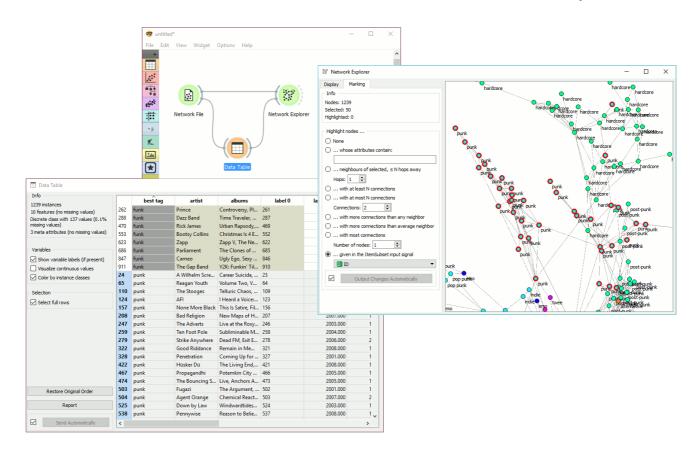
Network Explorer is the primary widget for visualizing network graphs. It displays a graph with Fruchterman-Reingold layout optimization and enables setting the color, size and label of nodes. One can also highlight nodes of specific properties and output them.


Nodes can be moved around freely as their position in space is not fixed (only optimized). To select a subset of nodes, draw a rectangle around the subset. To highlight the nodes, set the criterium in *Marking* tab and press Enter to turn highlighted nodes (orange) into selected nodes (red). To use pan and move the network around, use the right click. Scroll in for zoom.

Display

- 1. Information on the network. Reports on the number (and proportion) of nodes and edges.
- 2. Nodes: re-layout nodes with Fruchterman-Reingold optimization. Color and set the size of nodes by attribute. Set the maximum and minimum size of nodes and/or invert their sizing.
- 3. Node labels | tooltips: set node labels from the menu on the left and node tooltips from the menu on the right.
- Edges: If *Relative edge widths* is ticked, edges will have a thickness proportionate to their weight. Weights must be provided on the input for the option to be available. - If *Show edge weights* is ticked, weight will be displayed above the edges.


Marking


- 1. Information on the output. Reports on the number of nodes in the graph, selected nodes (red color), and highlighted nodes (orange color).
- 2. Highlight nodes: None. Nodes are highlighted. ...whose attributes contain. Nodes that satisfy a stated condition will be highlighted. ...neighbors of selected, ≤ N hops away. Highlights nodes of selected points extending a specified number of hops away. ...with at least N connections. With equal or more connections than specified in 'Connections'. ...with at most N connections. With less or equal connections than specified in 'Connections'. ...with more connections than any neighbor. Highlights well connected nodes (hubs). ...with more connections than average neighbor. Highlights relatively well connected nodes. ...with most connections. Highlights a specified number of well connected nodes. ...with most connections. Highlights nodes matching the provided subset criteria (ID or other attribute). If 'Output Changes Automatically' is ticked, changes will be communicated automatically. Alternatively, press 'Output Changes'.

Examples

In the first example we will simply display a network. We loaded *lastfm.net* data in *Network File* and send the data to **Network Explorer**. The widget shows an optimized projection of artist similarity data. We colored the nodes by 'best tag' attribute, showing different genres artists belong to, and set the size to the number of listeners per artist.

The second example shows how to highlight a specific subset in the graph. We continue to use *lastfm.net* data from the *Network File*. We also retained connection to the **Network Explorer**.

Then we created a second link to **Data Table** widget, where we selected all the artists from the punk genre. We sent these data to **Network Explorer** where we set *Highlight nodes* to *...given in the ItemSubset input signal*. Attribute ID was automatically considered for matching nodes. We can see nodes we selected in the subset highlighted in the graph. To mark them as a selected subset, press Enter.

🖉 v: latest 🔻

Network File

Read network graph file in Pajek or GML format.

Signals

Inputs:

• (None)

Outputs:

• Network

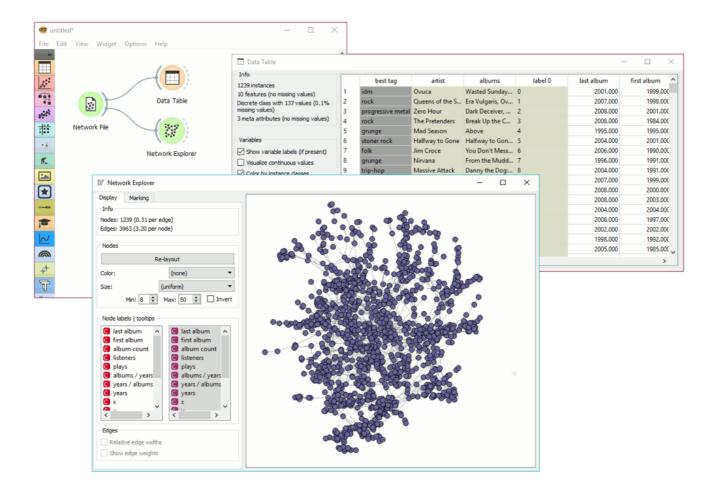
An instance of Network Graph.

• Items

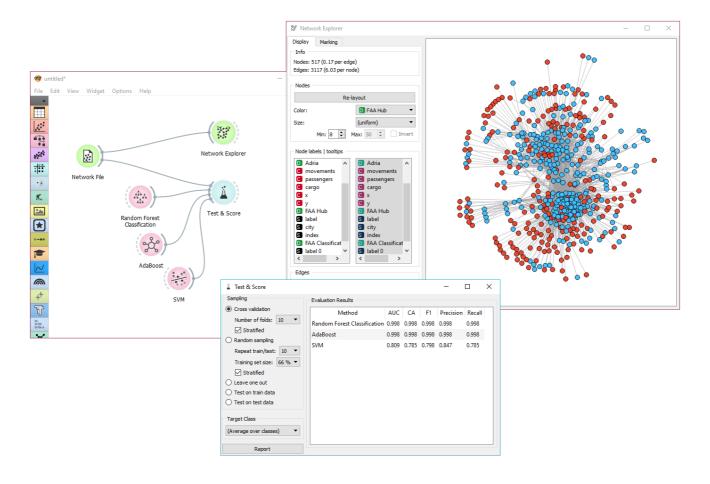
Properties of a network file.

Description

Network File widget reads network files and sends the input data to its output channel. History of the most recently opened files in maintained in the widget. The widget also includes a directory with sample data sets that come pre-installed with the add-on.


The widget reads data in .net, .gml, .gpickle, .gz, and .edgelist formats. A complimentary .tab or .csv data set can be provided for node information. Orange by default matches a file with the same name as .net file. If (None) is selected, the widget will generate the data from the graph.

Graph File Iastfm.net Image: Constraint of the second	Network File		?	×
Build graph data table automatically Vertices Data File	Graph File			0
Vertices Data File	lastfm.net	•	 🔂 Relo	ad
	Build graph data table automatically			
lastfm.tab 👻 📙 😒 Reload	Vertices Data File		 	0
	lastfm.tab	▼	 🔂 Relo	ad
Info	Info			0
Undirected graph 1239 nodes, 3963 edges Vertices data added	1239 nodes, 3963 edges			


- Graph File. Loads network file and (optionally) constructs a data table from the graph. A dropdown menu provides access to documentation data sets with *Browse documentation networks...*. The folder icon provides access to local data files. If *Build graph data table automatically* is checked, the widget will not output an inferred data table (no *Items* output will be available).
- 2. Vertices Data File. Information on the network nodes. Reads standard Orange data files. he folder icon provides access to local data files.
- 3. Information on the constructed network. Reports on the type of graph, number of nodes and edges and the provided vertices data file.

Examples

We loaded *lastfm.net* from documentation data set (dropdown \rightarrow Browse documentation networks) and connected **Data Table** and *Network Explorer* to the widget. **Network File** widget automatically matched the corresponding vertices data file. It outputs *Network* to **Network Explorer** where we can visualize the constructed network and *Items* to **Data Table**, where we can check the attributes of vertices.

The second example shows how to use the Network add-on for predictive modelling. We used *airtraffic.net* data and visualized the network in *Network Explorer*. We colored the nodes by FAA Hub attribute (is the airport a hub or not).

Then we tried to predict this value using **Test&Score** and a few classifiers (Random Forest, AdaBoost, SVM) from the core Orange. We can also connect the output of **Test&Score** to **Network Explorer** using the Predictions \rightarrow Node Data link and then coloring the nodes by predictions in the visualization.

🖉 v: latest 🕶

Network From Distances

Constructs a network from distances between instances.

Signals

Inputs:

• Distances

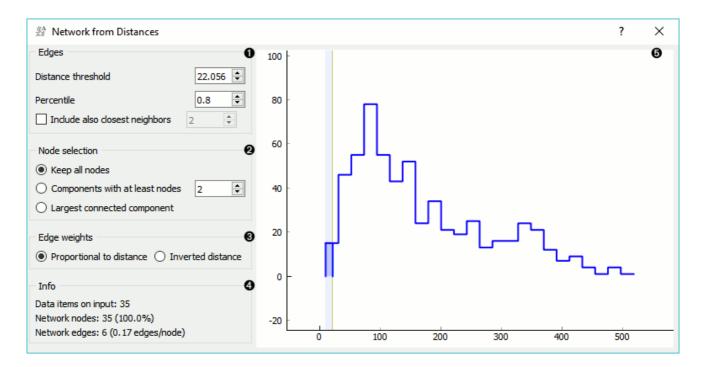
A distance matrix.

Outputs:

• Network

An instance of Network Graph.

• Data


Attribute-valued data set.

• Distances

A distance matrix.

Description

Network from Distances constructs a network graph from a given distance matrix. Graph is constructed by connecting nodes from data table where the distance between nodes is between the given threshold. In other words, all instances with a distance lower than the selected threshold, will be connected.

- 1. Edges: Distance threshold: a closeness threshold for the formation of edges. Percentile: the percentile of data instances to be connected. *Include also closest neighbors*: includes a number of closest neighbor to the selected instances.
- Node selection: Keep all nodes: entire network is on the ouput. Components with at least X nodes: filters out nodes with less than the set number of nodes. - Largest connected component: keep only the largest cluster.
- 3. Edge weights: Proportional to distance: weights are set to reflect the distance (closeness). Inverted distance: weights are set to reflect the inverted distance.
- 4. Information on the constructed network: Data items on input: number of instances on the input.
 Network nodes: number of nodes in the network (and the percentage of the original data). Network edges: number of constructed edges/connections (and the average number of connections per node).
- 5. Distance graph. Manually select the distance threshold from the graph by dragging the vertical line left or right.

Example

Network from Distances creates networks from distance matrices. It can transform continuous-valued data sets from a data table via distance matrix into a network graph. This widget is great for visualizing instance similarity as a graph of connected instances.

We took *iris.tab* to visualize instance similarity in a graph. We sent the output of **File** widget to **Distances**, where we computed Euclidean distances between rows (instances). Then we sent the output of **Distances** to **Network from Distances**, where we set the distance threshold (how similar the instances have to be to draw an edge between them) to 0.598. We kept all nodes and set edge weights to *proportional to distance*.

Then we observed the constructed network in a *Network Explorer*. We colored the nodes by *iris* attribute.

🖉 v: latest 🕶

Network Generator

Signals

Inputs:

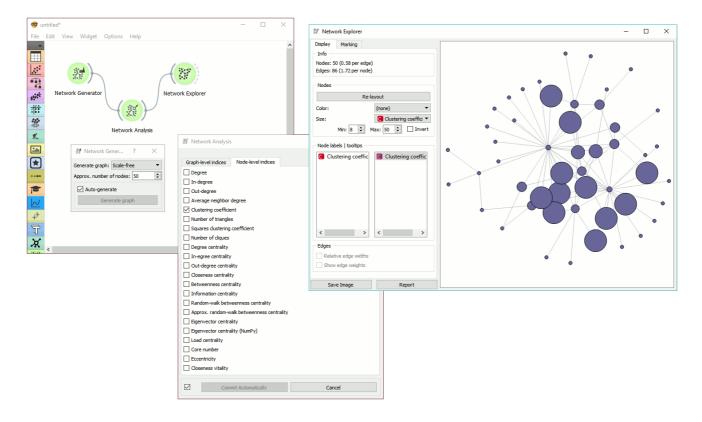
• (None)

Outputs:

Generated Network

An instance of Network Graph.

Description


Network Generator constructs exemplary networks. It is mostly intended for teaching/learning about networks.

證 Network Gener ?	×
Generate graph: Balanced tree Approx. number of nodes: 50	 ▼ ↓
Auto-generate	
Generate graph	

- Generate graph: Balanced tree Barbell Circular ladder Complete Complete bipartite -Cycle - Grid - Hypercube - Ladder - Lobster - Lollipop - Path - Regular - Scale-free - Shell - Star - Waxman - Wheel
- 2. Approx. number of nodes: nodes that should roughly be in the network (some networks cannot exactly satisfy this condition, hence an approximation).
- 3. If *Auto-generate* is on, the widget will automatically send the constructed graph to the output. Alternatively, press *Generate graph*.

Example

Network Generator is a nice tool to explore typical graph structures.

Here, we generated a *Scale-free* graph with approximately 50 vertices and sent it to *Network Analysis*. We computed the clustering coefficient and sent the data to *Network Explorer*. Finally, we observed the generated graph in the visualization and set the size of the vertices to *Clustering coefficient*. This is a nice tool to observe and explain the properties of networks.

🖉 v: latest 🔻

Set Enrichment Volcano F

Select Genes

Volcopo Blo

Volcano Plot

BioMart

Gives access to **BioMart** databases.

Signals

Inputs:

• None.

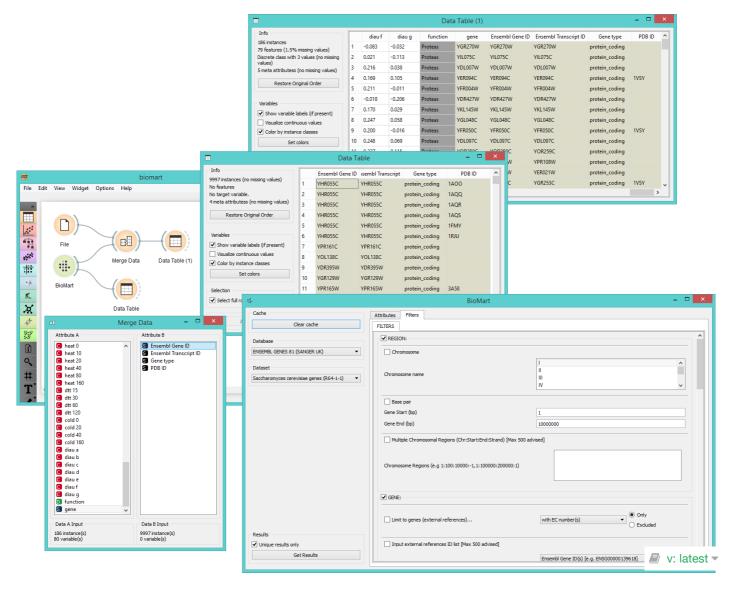
Outputs:

• Data

Data set.

Description

BioMart is a widget for direct access to **BioMart** databases. It sources data from BioMart, filters it by categories (gene, region, phenotype, gene ontology, etc.) and appends selected attributes in the output (IDs, sources, strains, etc.). Read more on the BioMart database library here.


+	BioMart	- 🗆 🗙
Cache	Attributes Filters 3	
Clear cache	Features Structures Homologs Variation (Germline) Variation (Sor	matic) Sequences
Database ② ENSEMBL GENES 81 (SANGER UK) Dataset ③ Ornithorhynchus anatinus genes (OANA5)	✓ GENE: Ensembl ✓ Ensembl Gene ID ✓ Ensembl Transcript ID	ene Source anscript Name anscript Source unt t t be) script)) cript)
Results	GO GO GO Term Accession	
✓ Unique results only	GO Term Name	
Get Results	GO Term Definition	~

- 1. Clear cached data.
- 2. Select the database to source your data from.
- 3. Select the dataset (organism) to source your genes from.

- 4. If Unique results only is ticked, the widget will prevent data duplication. Click Get results to output the data.
- 5. Set the output:
 - in Attributes you set the meta data you wish to output (e.g. IDs, sources, strains...).
 - $\circ~$ in **Filter** you filter the data by gene, phenotype, ontology, protein domains, etc.

Example

BioMart is a great widget for appending additional information to your data. We used *brown-selected* data in the **File** widget. Then we selected *Ensembl genes 81 (Sanger UK)* database to source our additional data from. We decided to append *Ensembl Gene ID*, *Ensembl Transcript ID*, *gene type* and *PDB ID*. We also filtered the data to output only those genes that can be found on chromosome I. We got 9997 instances with 4 meta attributes. Then we used **Merge Data** widget to append these metas to our data. We matched the data by gene/Ensemble gene ID and in the end we got a merged data table with 5 meta attributes.

Data Profiles

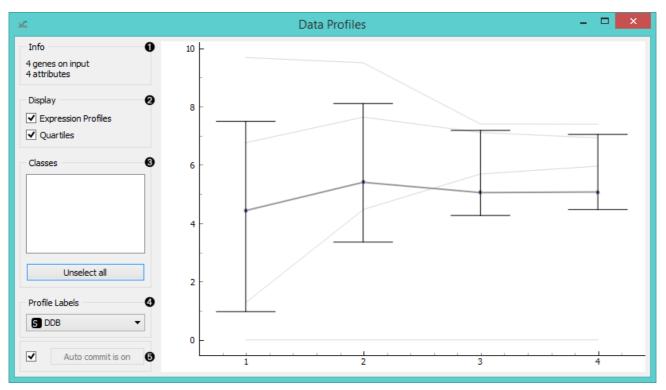
Plots gene expression levels by attribute in a graph.

Signals

Inputs:

• Data

Data set.


Outputs:

Selected Data

Instances that the user has manually selected from the plot.

Description

Data Profiles plots gene expression levels for each attribute in a graph. The default graph displays the mean expression level for the input data set. The x-axis represents attributes and the y-axis gene expression values. By hovering over the line you can see which gene it represents and by click on the line you will select the gene and output it.

- 1. Information on the input data.
- 2. Select display options:
 - Expression Profiles will display expression levels for individual data instances.
 - **Quartiles** will show quartile cut-off points.
- 3. If the data has classes, you can select which class to display by clicking on it. Such data will also be colored by class. *Unselect All* will show an empty plot, while *Select All* will diplay all data instances by class.
- 4. Select which attribute you wish to use as a profile label.
- 5. If Auto commit is on, the widget will automatically apply changes to the output. Alternatively click Commit.

Example

Data Profiles is a great widget for visualizing significant gene expression levels, especially if the data has been sourced at different timepoints. This allows the user to see differences in expression levels in time for each instance in the data set and the overall mean.

Below we used the **PIPAx** widget, where we selected 8 *AX4 Dictyostelium* experiments, all having been sourced at different timepoints and belonging to one of the two replicates. We decided to average replicates (to get one instance for both replicates) and to apply logarithmic transformation to adjust expression levels.

In **Select Genes** we decided to observe only the three genes from the data set that are a part of the *increased exocytosis* process (lsvB, pldB, amp3), which we selected in the *Import gene set names* option. This allows us to specify which biological process we're interested in and to observe only the specified genes.

Then we observe expression levels in **Data Profiles** widget, where we see all three *Expression Profiles* plotted, together with *Quartiles* and mean expression level. Finally, we selected the gene with the highest overall expression level and output it to **Data Table**.

File Edit View Widget Options Help Gene Attribute	
	•
Select genes from 'Gene Subset' input	
PIPAx Data Promes Copy genes to saved subsets	
	ection
• § Select specified genes	
Data Table - 🗆 🗙 Select Genes	
Info M1 R6', 'D507 N M1 R6', 'D497 N M1 R6', 'D503 N M1 R6', 'D509 N DDB	
1 instances (no missing values) Experiment ABC project ABC project ABC project Interview ABC project ABC project ABC project Interview ABC project Intervi	
4 features (no missing values) data_name I(1)_0Hr', 'AX4(2)_ I(1)_6Hr', 'AX4(2)_ 1)_12Hr', 'AX4(2)_ 1)_18Hr', 'AX4(2)_18Hr', 'AX4(2)_ 1)_18Hr', 'AX4(2)_ 1)_18Hr', 'AX4(2)_18Hr', '	
1 meta attributes (no missing values) growth HL5 HL5 HL5 HL5 HL5 - Dictyostelium discoideum AX4 -	·
idM1_R6', 'D507_MM1_R6', 'D507_MM1_R6', 'D503_MM1_R6', 'D509_M Restore Original Order replicate [11', '2'] [1'1', '2'] [1'1', '2'] [1'1', '2'] [1'1', '2'] Saved Selections	
species_nam /ostelium discoid /ostelium discoid /ostelium discoid	
Variables tp 0 6 12 18	
Veratment none none none Inique, id _M1_R6', 'D507_M_M1_R6', 'D497_M_M1_R6', 'D503_M_M1_R6', 'D509_M	
Visualize continuous values 1 41.000 111.070 50.027 57.400 DDB C0.027001	
✓ Color by instance dasses	
Set colors	
Selection	
V Select ful rows Data Profiles -	
Auto send is on 7	
Auto serio is on 3 genes on input 4 attributes	
Display Expression Profiles	
V Quarties 5	
Classes	
4	
3	
Unselect all 2 -	
Profile Labels	
Auto commit is on 1 2 3 4	v: latest

Databases Update

Updates local systems biology databases, like gene ontologies, annotations, gene names, protein interaction networks, and similar.

Signals

Inputs:

• None

Outputs:

• None

Description

With the bioinformatics add-on you can access several databases directly from Orange. The widget can also be used to update and manage locally stored databases.

date	Last Updated	Size 4.7 MB 1.0 MB	0
date	Last Updated	4.7 MB	0
date	Last Updated	4.7 MB	0
		1.0 MB	
		LO IVID	
		193.7 KB	
		6.0 MB	
	2015-08-04	1.2 MB	
		735.5 KB	
	2014-10-06	1.8 KB	
	2015-02-16	7.5 MB	
Update	2015-08-04	3.9 MB	
		388.7 KB	
	2015-04-10	119.0 KB	
		7.5 MB	
		9.5 MB	
		3.6 MB	
		4.3 MB	
	2015-04-10	1.9 MB	
		4.8 MB	
		1.4 MB	
		12.4 MB	
	0	Access Code	
tems 2.4	(B) G		
	Update	2014-10-06 2015-02-16 2015-08-04 2015-04-10 2015-04-10	735.5 KB 2014-10-06 1.8 KB 2015-02-16 7.5 MB 2015-08-04 3.9 MB 388.7 KB 2015-04-10 119.0 KB 7.5 MB 9.5 MB 3.6 MB 4.3 MB 2015-04-10 1.9 MB 4.8 MB 1.4 MB 12.4 MB

- 1. Find the desired database.
- 2. A list of available databases described with data source, update availability, date of your last update and file size. A large **Update** button will be displayed next to the database that needs to be updated.
- 3. Update All will update and Download All will download all the selected databases. Cancel will abort the action.
- 4. Some data sets require the Access code. Type it in the provided field to access the database.
- 5. Information on the selected databases.

To get a more detailed information on the particular database hover on its name.

	2015-02-16	7.5 MB
Ipdate	2015-08-04	3.9 MB
		388.7 KB
State:	downloaded, nee	ds update
Tags:	gene, ontology, G	D, essential
File: C	:\Users\Ajda Pretr	nar\AppData\Roaming\Orange3\buffer\bigfiles\GO\gene_ontology_edit.obo.tar.gz
Serve	r version: 2015-08-	07 09:37:56.142158
- · ·	: old (2 days)	

🖉 v: latest 🕶

dictyExpress

Gives access to **dictyExpress** databases.

Signals

Inputs:

• (None)

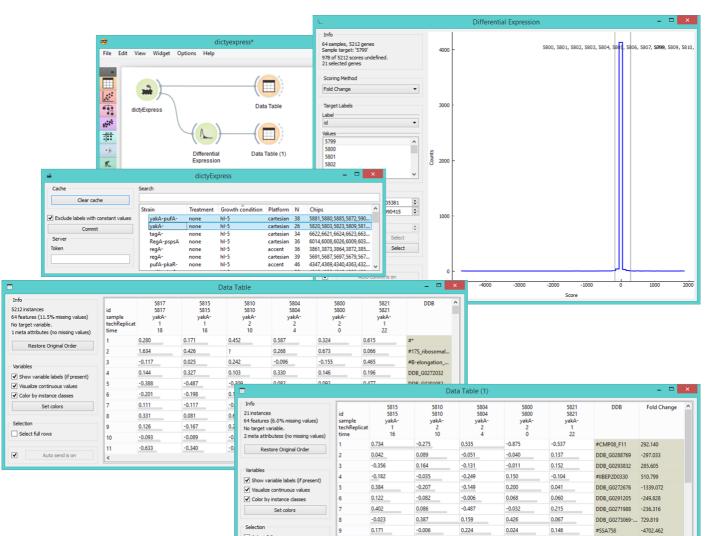
Outputs:

• Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding option is chosen, the average of multiple replicates.

Description

dictyExpress is a widget for a direct access to **dictyExpress** database and it is very similar to the **GenExpress** and **GEO Data Sets** widgets as it allows you to dowload selected experiments.


<u></u>		dictyExpre	SS				×
Cache 0	Search 🚯						
Clear cache							
0	Strain	Treatment	Growth condition	Platform	N	Chips	^
Exclude labels with constant values	yakA-pufA-	none	hl-5	cartesian	38	5881,5880,5885,	
Commit 🚯	yakA-	none	hl-5	cartesian	26	5820,5803,5823,	
	tagA-	none	hl-5	cartesian	34	6622,6621,6624,	
Server 4	smkA-	none	unknown	accent	24	5209,5191,5196,	
Token	RegA-pspsA	none	hl-5	cartesian	36	6014,6008,6026,	
	regA-	none	hl-5	accent	36	3861,3873,3864,	
	regA-	none	hl-5	cartesian	39	5691,5687,5697,	
	pufA-pkaR-	none	hl-5	accent	46	4347,4369,4340,	
	pufA-pkaC-	none	hl-5	accent	25	4015,4022,4010,	
	pufA-	none	hl-5	accent	22	3916,3912,3906,	
	pufA-	none	hl-5	cartesian	39	5825,5848,5856,	
	pspA::Rm	none	hl-5	accent	14	4317,4311,4313,	
	pspA::Rm	none	hl-5	cartesian	13	6096,6090,6097,	
	pp4c-	none	unknown	accent	24	5153,5164,5144,	
	pkaR-regA-	none	hl-5	accent	12	3936,3944,3940,	
	pkaR-regA-	none	hl-5	cartesian	43	5983,5980,5960,	
	pkaR-	none	hl-5	accent	23	3887,3893,3898,	
	pkaR-	none	hl-5	cartesian	39	5732,5728,5726,	
	pkaC-	none	hl-5	cartesian	51	5757,5794,5778,	¥

- 1. The widget will automatically save (cache) downloaded data, which makes them available also in the offline mode. To reset the widget click *Clear cache*.
- 2. *Exclude labels with constant values* removes labels that are the same for all the selected experiments in the output.
- 3. Click *Commit* to output the data.
- 4. Publicly available data are accessible from the outset. Use Token to access password protected data.
- 5. Available experiments can be filtered with the *Search* box at the top.

Example

In the schema below we connected **ditcyExpress** to a **Data Table** to observe all of the selected experiments. Then

we used Differential Expression widget to select the most relevant genes and output them to another Data Table.

10

11

-0.159

0.175

0.162

-0.021

0.149

0.201

0.143

-0.068

-0.169

0.219

DDB_G0267406

DDB_G027566

336.132

🖉 v: latest 🗸

Select full rows

Auto send is on

✓

Differential Expression

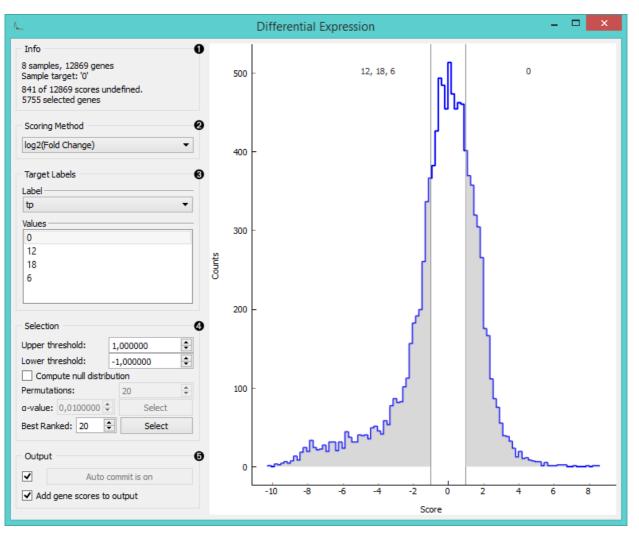
Plots differential gene expression for selected experiments.

Signals

Inputs:

• Data

Data set.


Outputs:

Selected data

Data subset.

Description

This widget plots a <u>differential gene expression</u> graph for a sample target. It takes gene expression data as an input (from **dictyExpress**, **PIPAx**, etc.) and outputs a selected data subset (normally the most interesting genes).

1. Information of the data input and output. The first line shows the number of samples and genes in the data set. The second line displays the selected sample target (read around which the graph is plotted). The third line shows the number of undefined gene (missing data) and the fourth the number of genes in the output.

- 2. Select the plotting method in *Scoring method*:
 - **Fold change**: final to initial value ratio
 - log2 (fold change): binary logarithmic transformation of fold change values
 - **T-test**: parametric test of null hypothesis
 - T-test (P-value): parametric test of null hypothesis with P-value as criterium
 - **ANOVA**: variance distribution
 - ANOVA (P-value): variance distribution with P-value as criterium
 - Signal to Noise Ratio: biological signal to noise ratio
 - Mann-Whitney: non-parametric test of null hypothesis with P-value as criterium
- 3. Select *Target Labels*. Labels depend on the attributes in the input. In *Values* you can change the sample target (default value is the first value on the list, alphabetically or numerically).
- 4. *Selection* box controls the output data.
 - By setting the *Lower threshold* and *Upper threshold* values you are outputting the data outside this interval (the most interesting expression levels). You can also manually place the threshold lines by dragging left or right in the plot.
 - If you click *Compute null distribution* box, the widget will calculate null distribution and display it in the plot. *Permutations* field allows you to set the precision of null distribution (the more permutations the more precise the distribution), while

α

-value will be the allowed probability of false positives. Press Select to output this data.

- The final option is to set the number of best ranked genes and output them with Select.
- 1. When *Auto commit is on* is ticked, the widget will automatically apply the changes. Alternatively press *Commit*. If the *Add gene scores to output* is ticked, the widget will append an additional column with gene scores to the data.

Example

In the example below we chose two experiments from the **PIPAx** widget (8 experiments measuring gene expression levels on *Dictyostelium discoideum* at different timepoints) and observed them in the **Data Table**. Then we used the **Differential Expression** widget to select the most interesting genes. We left upper and lower threshold at default (1 and -1) and output the data. Then we observed the selected data in another **Data Table**. As we have ticked the *Add gene scores to output*, the table shows an additional column with gene scores as instances.

									Data Ta	ble						- 🗆 ×	
			8 featu No targ	nstances (no missing f ires (no missing value get variable. attributess (no missi Restore Original Oro	es) ng values)	data_nam replicate species_na strain tp unique_id	e abcG am γosteli	6_M1_R6 15(2) 12Hr 2 um discoid AX4 12 6_M1_R6	D385_M1_R6 abcG15(1) 12F 1 vostelium disco AX4 12 D385_M1_R6	lr abcG1 id yosteliu	0_M1_R6 5(1) 18Hr 1 m discoid AX4 18 0_M1_R6	D378_N abcG15(2 vostelium AX 18 D378_N	2) 18Hr ! discoid (4 8	DDB	log2(Fold	d Change) 🔨	
				Restore Original Ori	Jer	1	0.000		0.000	0.000		0.000		DDB_G0267222	1.285		
00		differential expression*	- Variab	les		2	0.000		1.006	5.082		2.844		DDB_G0267250			
File	Edit View Widget C	· · · · · · · · · · · · · · · · · · ·		ow variable labels (if j	present)	3	2.172		1.300	1.642		5.512		DDB_G0267252	1.690		
File	Edit View Widget C	puons neip		ualize continuous valu		4	36.251		46.995	50.220		71.544		DDB_G0267292	-1.189		
	0		Col	or by instance classe	s	5	0.000		5.380	2.265		0.000		DDB_G0267354	1.730		
				Set colors		6	386.67	8	552.946	338.938		304.163		DDB_G0267356	-1.040		
			Sele						Da	a Table ((1)						×
	PIPAx	Differential Expression Data Table	Sele ▼ S	Info 12869 instances (r 8 features (no mis No target variable 1 meta attributes	sing values) (no missing va	alues) st	ata_name eplicate pecies_nam train p nique_id	D388_N abcG15 2 vostelium AX 6 D388_N	(2) 6Hr abcG discoid yosteli (4	5_M1_R6 15(2) 12Hr 2 um discoid AX4 12 5_M1_R6	D385_N abcG15(/ostelium AX 12 D385_N	1) 12Hr discoid 4 2	D379_M abcG15(1 rostelium AX4 18 D379_M) 18Hr abcG1 discoid yosteliu 4 /	_M1_R6 5(2) 18Hr 2 m discoid 4X4 18 _M1_R6	DDB	
	-	Data Table (1)		Restore O	riginal Order	1	inque_iu	0.000	0.000	214112100	0.000		0.000	1.298		DDB_G0267178	
		1		Differenti	al Evoros	sion				□ ×	.000		.719	0.000		DDB_G0267180	
X				Differenti	ai Expres:	SION		-		_	.000	1	.133	0.000		DDB_G0267182	
¢		Info 8 samples, 12869 genes									.000	C	0.000	0.000		DDB_G0267184	
lì		Sample target: '0'		500 -		12, 18, 6			0		.000	C	0.000	0.000		DDB_G0267186	
0		841 of 12869 scores undefined. 5755 selected genes					10	~			.000	C	0.000	0.000		DDB_G0267188	
		Scoring Method					°`	1			.000	C	0.000	0.000		DDB_G0267190	
#							1				.000	C	0.000	1.982		DDB_G0267194	
Т		logz(i old change)		400 -				1			.000	C	0.000	0.000		DDB_G0267196	
1		Target Labels					٦,	۱.			.000	C	0.000	0.000		DDB_G0267198	>
		Label • •					1										
		Values						5									
		0		300 -				1									
		12 18	Counts				J	<u>ـ</u> ـــــــــــــــــــــــــــــــــــ									
		6	S														
				200 -			3										
		Selection Upper threshold: 1,000000						<u>۲</u>									
		Lower threshold: -1,000000															
		Compute null distribution						L ا									
		Permutations: 20		100 -		្ឋ		ιL									
		a-value: 0,0100000				5		1									
		Best Ranked: 20 🗢 Select			Աստի	᠕			5								
		Output		كمهر	J~J []]				Sur-								
		Auto commit is on		0													
		Add gene scores to output		-10	8 -6	-4	-2 0	2	4 6	8						🖉 v: lat	tost =
							Score									e v. lai	.631 *

Expression Profile Distances

Computes distances between gene expression levels.

Signals

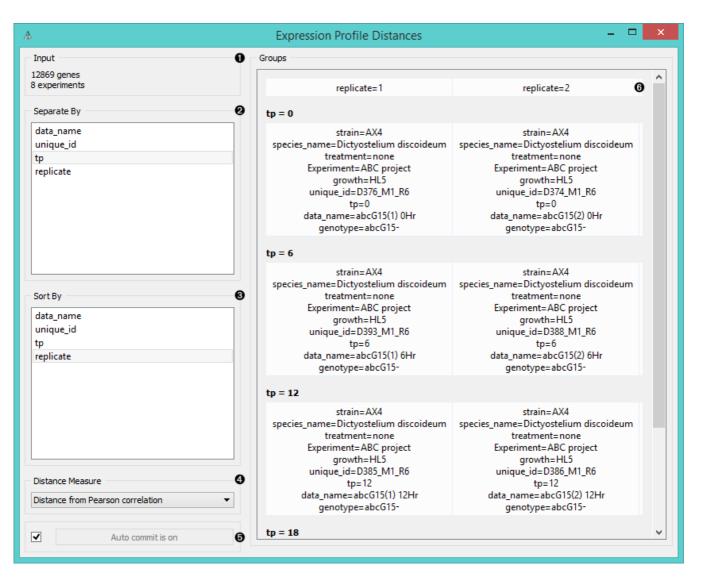
Inputs:

• Data

Data set.

Outputs:

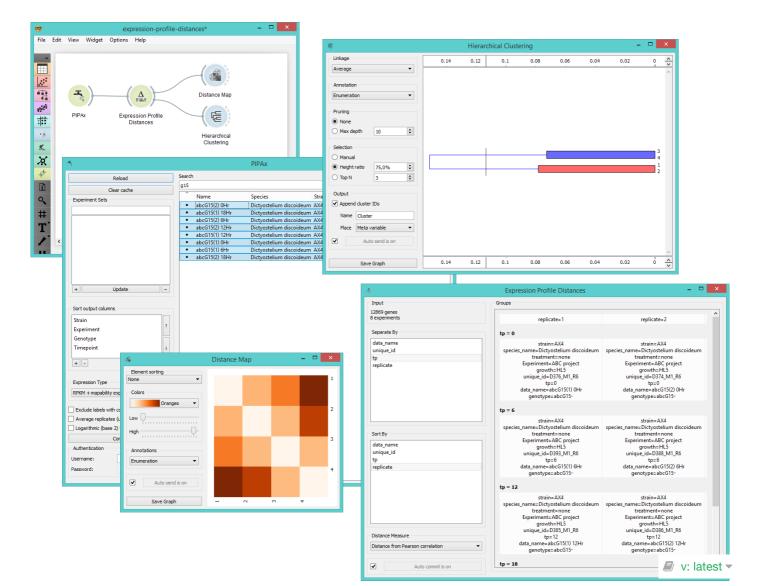
• Distances


Distance matrix.

• Sorted Data

Data with groups as attributes.

Description


Widget **Expression Profile Distances** computes distances between expression levels among groups of data. Groups are data clusters set by the user through *separate by* function in the widget. Data can be separated by one or more variable labels (usually timepoint, replicates, IDs, etc.). Widget outputs distance matrix that can be fed into **Distance Map** and **Hierarchical Clustering** widgets.

- 1. Information on the input data.
- 2. Separate the experiments into groups by labels (normally timepoint, replicates, data name, etc.).
- 3. Sort the experiments inside the group by labels.
- 4. Choose the *Distance Measure*:
 - **Pearson** (linear correlation between the values, remapped as a distance in a [0, 1] interval)
 - Euclidean ("straight line", distance between two points)
 - Spearman (linear correlation between the rank of the values, remapped as a distance in a [0, 1] interval)
- 5. If *Auto commit is on*, the widget will automatically compute the distances and output them. Alternatively click *Commit.*
- 6. This snapshot shows 4 groups of experiments (tp=0, tp=6, tp=12, tp=18) with 2 experiments (replicates) in each group.

Example

Expression Profile Distances widget is used to calculate distances between gene expression values sorted by labels. We chose 8 experiments measuring gene expression levels on *Dictyostelium discoideum* at different timepoints. In the **Expression Profile Distances** widget we separated the data by timepoint and sorted them by replicates. We could see the grouping immediately in the *Groups* box on the right. Then we fed the results to **Distance Map** and **Hierarchical Clustering** to visualize the distances and cluster the attributes.

Gene Info

S

Displays information on the genes in the input.

Signals

Inputs:

• Data

Data set.

Outputs:

Selected Data

Instances with meta data that the user has manually selected in the widget.

Description

A useful widget that presents information on the genes from the <u>NCBI database</u>. You can also select a subset and feed it to other widgets. By clicking on the gene NCBI ID in the list, you will be taken to the NCBI site with the information on the gene.

8			(Gene Info				х
Info	Filter							
6378 genes 5665 matched NCBI's IDs								
5665 matched (CB13 155	NCBI ID	Symbol	Locus Tag	Chromosome	Description	Synonyms	Nomenclature	1
Organism	854598	COX1 (Q0045)	Q0045	MT	cytochrome c oxidase subunit 1	OXI3		
Saccharomyces cerevisiae S288c 🔻	<u>854593</u>	AI1 (Q0050)	Q0050	MT	intron-encoded reverse transcripta			
	<u>854594</u>	AI2 (Q0055)	Q0055	MT	intron-encoded reverse transcripta			
Gene names	<u>854595</u>	AI3 (Q0060)	Q0060	MT	intron-encoded DNA endonucleas			
Gene atttibute	<u>854596</u>	AI4 (Q0065)	Q0065	MT	intron-encoded DNA endonucleas			
S gene 🗸	<u>854597</u>	AI5_ALPHA (Q0070)	Q0070	MT	intron-encoded DNA endonucleas			
	<u>854599</u>	AI5_BETA (Q0075)	Q0075	MT	intron-encoded DNA endonucleas			
Use attribute names	<u>854600</u>	ATP8 (Q0080)	Q0080	MT	F1F0 ATP synthase subunit 8	AAP1		
	<u>854601</u>	ATP6 (Q0085)	Q0085	MT	F1F0 ATP synthase subunit a	OLI2, OLI4, PHO1		
Commit 4	<u>854583</u>	COB (Q0105)	Q0105	MT	cytochrome b	COB1, CYTB		
	<u>854604</u>	BI2 (Q0110)	Q0110	MT	cytochrome b mRNA maturase bl2			
	<u>854605</u>	BI3 (Q0115)	Q0115	MT	cytochrome b mRNA maturase bl3			
		Sele	ect Filtered		0	Clear Selection		6

- 1. Information on data set size and genes that matched the NCBI ID's.
- 2. Select the organism of reference.
- 3. Set the source of gene names. If your gene names are placed as attributes names, select Use attribute names.
- 4. If Auto commit is on, changes will be communicated automatically. Alternatively click Commit.
- 5. In the row above the list you can filter the genes by search word(s). If you wish to output the filtered data, click *Select Filtered*.
- 6. If you wish to start from scratch, click *Clear Selection*.

Example

Below we first view the entire *Caffeine effect: time course and dose response* data set in the *Data Table* widget. Then we feed the same data into the *Gene Info*, where we select only the genes that are located on the 11th chromosome. We can observe these data in another *Data Table*, where additional information on the selected genes are appended

as meta attributes.

Edit		ne info*			×									
dit	View Widget Options Help												_ □	x
									Data Table	e				^
	(3)				res (no n	o missing values) iissing values)	agent dose time	GSM91444 calcofluor white high 90 min	GSM918 calcofluor high 90 mir	white	GSM91431 congo red high 90 min	GSM91885 congo red high 90 min	gene	^
	GEO Gene Info	Da	ata Table (1)			(no missing values)	1	0.443	-0.111	-0.0	094	-0.133	EMPTY	
					Restore (Original Order	2	-0.197	-0.238	-0.3	207	0.281	AAC1	
G	EO Data Sets						3	0.522	0.244	0.0		0.135	AAC3	
				- Variable	s		4	0.204	0.075	0.1	49	0.353	AAD10	
						labels (if present)	5	-0.556	0.365	0.4		-0.120	AAD14	
	Data Table					nuous values	6	0.063	-0.247	-0.3		-0.117	AAD15	
				Color	r by insta	nce classes	7	-0.229	0.446	0.0		-0.038	AAD16	
						colors	,	-0.229	0.440	-1		0.020	AAD16 AAD3	
	8			Gene Ir	nfo									
	Info	Filter										-0.085	AAD4	
	6378 genes											0.128	AAD6	
	5665 matched NCBI's IDs	NCBI ID	Symbol Locus Ta	a Chrom	A DECOMO	Description		Synonym	c Nor	nenclature		-0.027	AAH1	~
	Organism	853679	ZRT3 YKL175W	- ,	losonie	Zn(2+) transporte	ar 7RT3	Synonym	5 1101	nenciature		-0.056	AAP1	>
	Saccharomyces cerevisiae S288c 🔻	853927	YSR3 YKR053C			sphinganine kina		LBP2						
	Succharomyces cereviside szooe	853666	YRA2 YKL214C			Yra2p								
	Gene names	<u>853884</u>	YPT52 YKR014C	XI		Rab family GTPas	e YPT52							
	Gene atttibute	<u>853761</u>	YPF1 (YKL100C) YKL100C			aspartic endopep								
	S gene 👻	853798	YNK1 YKL067W			nucleoside dipho		e NDK1						
	Use attribute names	853638	YKT6 YKL196C YKR104W YKR104V			palmitoyltransfer		NFT1						
		853953	YKR104W YKR104W YKR078W YKR078V			hypothetical prot hypothetical prot		NETT						
	Commit	853950	YKR075C YKR075C			hypothetical prot								
	Comme	853944	YKR070W YKR070V			hypothetical prot								
		<u>853925</u>	YKR051W YKR051V	V XI		hypothetical prot	ein				~			
								Data Ta	able (1)					-
			Info 299 instances (no missing valu 36 features (no missing value No target variable.		agent dose time	GSM91431 congo red high 90 min	GSM918 congo r high 90 mir	ed	NCBI ID	Symbol	Locus Tag	Chromosome	Description	Synony
			8 meta attributess (no missing	values)	1	-0.647	-0.112	AAT1	853755	AAT1	YKL106W	XI	aspartate tran	
			Restore Original Orde	r	2	-0.416	0.445	ABF1	853748	ABF1	YKL112W	XI	DNA-binding	BAF1, OBF
					3	0.382	-0.381	ACP1	853642	ACP1	YKL192C	XI	Acp1p	
			Variables		4	-0.096	0.509	ADD66	853629	ADD66	YKL206C	XI	Add66p	PBA2, POC
			Show variable labels (if pr	esent)	5	0.099	0.044	AIM26	853829	AIM26	YKL037W	XI	Aim26p	
			Visualize continuous value			0.216	-0.527	AIM29	853949	AIM29	YKR074W	XI	Aim29p	
			Color by instance classes		-	0.292	-0.260	ALY1	853891	ALY1	YKR021W	XI	Aly1p	ART6
			Set colors		· ·	0.729	-0.779	ANR2	853819	ANR2	YKL047W	XI	Anr2p	
					9	-0.247	-0.040	APE1	853758	APE1	YKL103C	XI	metalloamino	
			-				-0.040	APET	000/00	APEI	TRETUSC	AI	metanoamino	API, LAP4,
			Selection					4052	052600	4052	VKI 15704	VI	A = = 2 =	
			Selection Select full rows		10	-0.288	0.357	APE2	853699	APE2	YKL157W	XI	Ape2p	LAP1, YKL
					10 11			APE2 APL2 APN1	853699 853723 853746	APE2 APL2 APN1	YKL157W YKL135C YKL114C	XI XI	Ape2p Apl2p DNA-(apurini.	LAP1, YKL

GenExpress

Gives access to **GenExpress** databases.

Signals

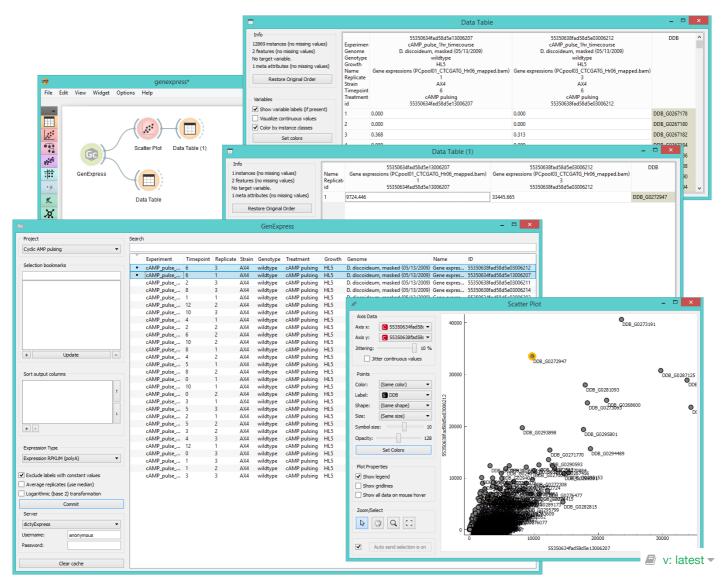
Inputs:

• (None)

Outputs:

• Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding option is chosen, the average of multiple replicates.


Description

GenExpress is a widget for a direct access to **GenExpress** database. It is very similar to the **PIPAx** and **GEO Data Sets** widgets as it allows you to download the data from selected experiments.

Gc	GenE	xpress					- 🗆 🗙
Project	Search 9						
Cyclic AMP pulsing							
	Experiment	Timepoint	Replicate	Strain	Genotype	Treatment	Growth
Selection bookmarks 2	cAMP_pulse_1hr_time	0	1	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time	0	2	AX4	wildtype	cAMP pulsing	HL5
New selection	cAMP_pulse_1hr_time	0	3	AX4	wildtype	cAMP pulsing	HL5
New selection	cAMP_pulse_1hr_time	1	1	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time	1	2	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time	1	3	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		3	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
+ Update -	cAMP_pulse_1hr_time	3	3	AX4	wildtype	cAMP pulsing	HL5
+ Update –	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
Sort output columns 3	cAMP_pulse_1hr_time		3	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
Replicate	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		3	AX4	wildtype	cAMP pulsing	HL5
	 cAMP_pulse_1hr_time 		1	AX4	wildtype	cAMP pulsing	HL5
1	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
	 cAMP_pulse_1hr_time 		3	AX4	wildtype	cAMP pulsing	HL5
+ -	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
T	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
	cAMP_pulse_1hr_time		3	AX4	wildtype	cAMP pulsing	HL5
Expression Type 4	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
Expression RPKUM (polyA)	cAMP_pulse_1hr_time		2	AX4	wildtype	cAMP pulsing	HL5
Expression removing buyyy	cAMP_pulse_1hr_time		3	AX4	wildtype	cAMP pulsing	HL5
—	cAMP_pulse_1hr_time		1	AX4	wildtype	cAMP pulsing	HL5
Exclude labels with constant values	cAMP_pulse_1hr_time	12	2	AX4	wildtype	cAMP pulsing	HL5
Average replicates (use median)							
Logarithmic (base 2) transformation							
Commit 0							
Server 0							
dictyExpress 👻							
Username: anonymous							
Password:							
Clear cache							

- 1. Choose a projects to source your data from.
- 2. Use *Selection bookmarks* to save a selection: select experiments, click the "+" button and name the set. To add experiments to your set, click on the set name, select additional experiments and click *Update*. To remove the set click "-".
- 3. In *Sort output columns* set the attributes by which the output columns are sorted. Add attributes with a "+" button and remove them with "-". Switch the sorting order with arrows on the right.
- 4. Set the expression type for your output data.
 - Expression RPKM outputs data in reads per kilobase of transcript per million mapped reads
 - Expression RPKUM outputs only RPKUM data.
 - **Read counts (raw)** outputs raw read count data. The polyA variants use only polyA (mRNA) mapped hits.
- Exclude labels with constant values removes labels that are the same for all selected experiments. Average replicates (use median) averages identical experiments by using medians as values. Logarithmic (base 2) transformation returns log₂(value+1) for each value.
- 6. Click *Commit* to output selected data.
- 7. Select the server you wish to access the data from. Log in to access private data.
- 8. *Clear cache* removes the uploaded data sets from internal memory.
- 9. Experiments can be filtered with the *Search* box. To select which attributes to display right-click on the header. To select multiple experiments click them while holding the *Control/Command* key.

In the schema below we connected **GenExpress** to **Data Table** to view the gene expression reads and then to **Scatter Plot**, where we chose to view expression levels from two experiments. In the plot we select an outlier and view it in another **Data Table**.

GEO Data Sets

Provides access to data sets from gene expression omnibus (GEO DataSets).

Signals

Inputs:

• (None)

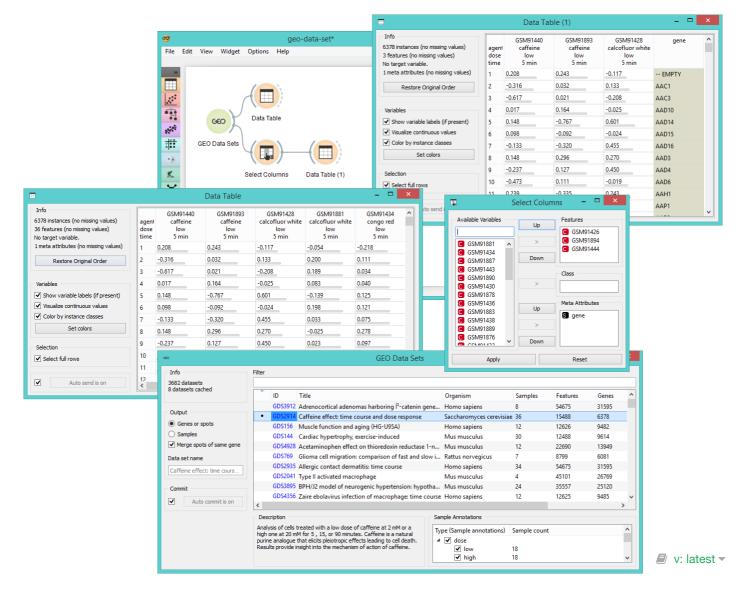
Outputs:

• Data

Data set selected in the widget with genes or samples in rows.

Description

GEO DataSets is a data base of gene expression curated profiles maintained by <u>NCBI</u> and included in the <u>Gene Expression Omnibus</u>. This Orange widget provides access to all its data sets and outputs a data set selected for further processing. For convenience, each dowloaded data set is stored locally.


		GE	O Data Sets							
nfo 0	Filter 🗿									
datasets cached	ID	Title	Organism		Samples	Features	Genes	Subsets	PubMedID	
	• GDS414	0 Proteasomal inhibitor lactacystin effect on cortical	I n Mus musci	ulus	6	12488	9614	4	20683911	
Dutput 2	• GDS339	2 Newborn intestinal tissues response to Shigella fle	ki Mus musci	ulus	36	22690	13949	8	18354217	
Genes or spots	• GDS354	Lithium response in yeast	Saccharom	yces cerevisiae	7	9335	8714	7	12791685	
) Samples	• GDS227	6 Embryonic stem cell line response to the condition	na Mus musci	ilus	16	45101	26769	8	16809427	
Merge spots of same gene	GDS105	Valproic acid effect on theca cells (HG-U133A)	Homo sapi	ens	13	22283	14093	4	15598877	
ata set name	GDS475	5 Hematopoietic cell response to Xist deficiency in f	e Mus musci	ulus	20	35557	25120	10	23415223	
	GDS351	7 Oncogenic NRAS depletion effect on melanoma c	ell Homo sapi	ens	51	22283	14093	10	18814281	
roteasomal inhibitor lactac		Myogenic differentiation timecourse (MG-U74A)	Mus musci		24	12488	9614	8	14688207	
ommit 🚯		4 Low concentrations of 17beta-estradiol effect on b	ore Homo sapi	ens	25	22283	14093	5	14610279	
		1 POU-domain transcription factor Brn3a knockout			6	12488	9614	3	15253936	
Auto commit is on		3 Brown fat cell response to PGC-1alpha and PGC-11			6	45101	26769	5	16679291	
		0 Macrophage response to lipopolysaccharide and in			18	45101	26769	5	18025162	
		8 Probiotic effect on inflamed colonic explants	Homo sapi		18	54675	31595	8	22669626	
		4 Lymphatic endothelial cell response to Prox1 and N			4	54675	31595	4	18815287	
		Ligand screen in B cells: 2-methyl-thio-ATP	Mus musci		11	16273	11168	4		
		2 Transcription factor POU4F1 effect on fetal liver ce	lls Mus musci	ulus	9	45101	26769	4	20376082	
		7 Danaera waa waa waa waa aha aha aha aha aha ah			4	22575	17001		16525670	_
	Description)		Sample Annotat	ions 🛈					
		ured cortical neurons treated with 1uM lactacystin for up uces neuronal apoptosis. Results provide insight into mole		Type (Sample	annotations) Sample cour	nt			_
		derlying proteasomal inhibition-induced neuronal death.	cula	⊿ 🖌 agent						
				🗸 cor		2				
					tacystin	4				
				▲ ✔ time ▼ 24	h	3				
				 ✓ 24 ✓ 48 		3				

- 1. Information on the GEO data set collection. Cached data sets are the ones currently stored on the computer.
- 2. Output features. If *Genes or spots* is selected, genes (or spots) will be used as attributes. Alternatively samples will be used as attributes. *Merge spots of same gene* averages measures of the same gene. Finally, in the *Data set name* you can rename the output data. GEO title will be used as a default name.
- 3. If *Auto commit is on*, then the selected data set will be automatically communicated to other widgets. Alternatively, click *Commit*.
- 4. *Filter* allows you to search for the data set. Below you see a list of GEO data sets with an ID number (link to the NCBI Data Set Browser), title, organism used in the experiment, number of samples, features, genes, subsets and a reference number for the PubMed journal (link to the article abstract).
- 5. Short description of the experiment from which the data set is sourced.

6. Select which Sample Annotations will be used in the output.

Example

GEO Data Sets is similar to the **File** widget. In the example below we selected *Caffeine effect: time dose and re*sponse data set from the GEO data base and used *Genes or spots* as attributes. We inspected the data in *Data Table*. Then we selected 3 genes in the **Select Columns** widget for a detailed analysis in another data table.

GO Browser

GO

Provides access to Gene Ontology database.

Signals

Inputs:

Cluster Data

Data on clustered genes.

Reference Data

Data with genes for the reference set (optional).

Outputs:

• Data on Selected Genes

Data on genes from the selected GO node.

Data on Unselected Genes

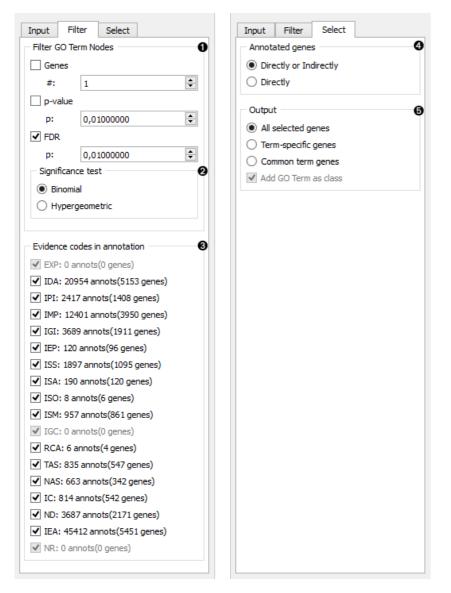
Data on genes from GO nodes that weren't selected.

• Data on Unknown Genes

Data on genes that are not in the GO database.

• Enrichment Report

Data on GO enrichment analysis.

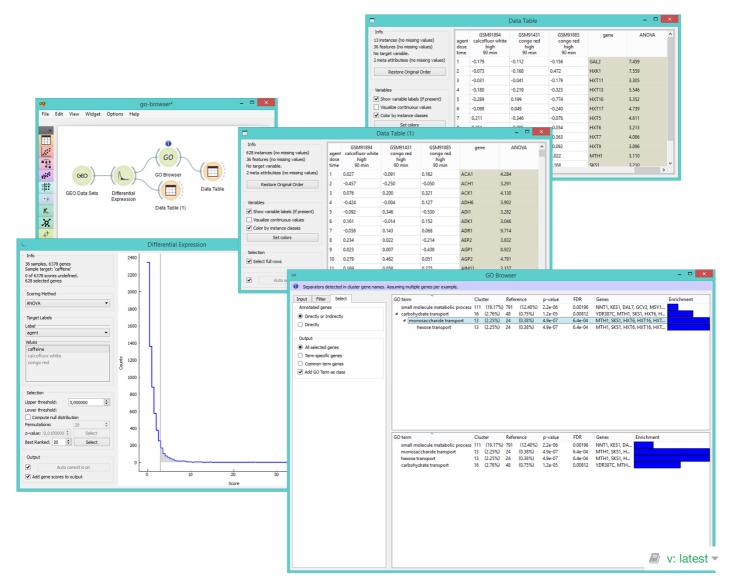

Description

GO Browser widget provides access to *Gene Ontology database*. Gene Ontology (GO) classifies genes and gene products to terms organized in a graph structure called an ontology. The widget takes any data on genes as an input (it is best to input statistically significant genes, for example from the output of the **Differential Expression** widget) and shows a ranked list of GO terms with p-values. This is a great tool for finding biological processes that are over- or under-represented in a particular gene set. The user can filter input data by selecting terms in a list.

		GO Bro	wser				
Separators detected in cluster gene names. A	ssuming multiple genes per example.						
nput Filter Select	GO term 🗿	Cluster	Reference	p-value	FDR	Genes	Enrichment
Info Info Organism Organism Gene Names Gene matcher settings Gene matcher settings	small molecule metabolic process a carbohydrate transport a monosaccharide transport hexose transport	111 (19.17%) 16 (2.76%)	791 (12.40%) 48 (0.75%) 24 (0.38%)	2.2e-06 1.2e-05 4.9e-07 4.9e-07	0.00196 0.00812 6.4e-04 6.4e-04	NNT1, KES1, DAL7, GCV3, MSY1. YDR387C, MTH1, SKS1, HXT6, H. MTH1, SKS1, HXT6, HXT16, HXT MTH1, SKS1, HXT6, HXT16, HXT.	
Reference Entire genome Reference set (input) Aspect Biological process Cellular component Molecular function	GO term small molecule metabolic process monosaccharide transport hexose transport carbohydrate transport		24 (0.38%) 24 (0.38%)	p-value 2.2e-06 4.9e-07 4.9e-07 1.2e-05	FDR 0.00196 6.4e-04 6.4e-04 0.00812	Genes Enrichment NNT1, KES1, DA MTH1, SKS1, H MTH1, SKS1, H YDR387C, MTH	

INPUT tab

- 1. Information on the input data set. Ontology/Annotation Info reports the current status of the GO database.
- 2. Select organism for the GO term analysis.
- 3. Use this attribute to extract gene names for the input data. You can use attribute names as gene names and adjust gene matching in the *Gene matcher settings* box.
- 4. Select the reference. You can either have the *entire genome* as reference or a *reference set* from the input.
- 5. Select the ontology where you want to calculate the enrichment. There are three *Aspect* options:
 - Biological process
 - Cellular component
 - Molecular function
- 6. A ranked tree (upper pane) and list (lower pane) of GO terms for the selected aspect:
 - GO term
 - **Cluster**: number of genes from the input that are also annotated to a particular GO term (and its proportion in all the genes from that term).
 - **Reference**: number of genes that are annotated to a particular GO term (and its proportion in the entire genome).
 - **P-value**: probability of seeing as many or more genes at random. The closer the p-value is to zero, the more significant a particular GO term is. Value is written in <u>e notation</u>.
 - **FDR:** <u>false discovery rate</u> a multiple testing correction that means a proportion of false discoveries among all discoveries up to that FDR value.
 - **Genes**: genes in a biological process.
 - **Enrichment** level


FILTER tab

- 1. Filter GO Term Nodes by:
 - Genes is a minimal number of genes mapped to a term
 - P-value is a max term p-value
 - FDR: is a max term false discovery rate
- 2. Significance test specifies distribution to use for null hypothesis:
 - Binomial: use a binomial distribution
 - Hypergeometric: use a hypergeometric distribution
- 3. Evidence codes in annotation show how the annotation to a particular term is supported.

SELECT tab

- 1. Annotated genes outputs genes that are:
 - Directly or Indirectly annotated (direct and inherited annotations)
 - Directly annotated (inherited annotations won't be in the output)
- 2. Output:
 - All selected genes: outputs genes annotated to all selected GO terms
 - Term-specific genes: outputs genes that appear in only one of selected GO terms
 - Common term genes: outputs genes common to all selected GO terms
 - Add GO Term as class: adds GO terms as class attribute

In the example below we have used **GEO Data Sets** widget, in which we have selected *Caffeine effects: time course and dose response* data set, and connected it to a **Differential Analysis**. Differential analysis allows us to select genes with the highest statistical relevance (we used ANOVA scoring) and feed them to **GO Browser**. This widget lists four biological processes for our selected genes. Say we are interested in finding out more about *monosaccharide transport* as this term has a high enrichment rate. To learn more about which genes are annotated to this GO term we view it in the **Data Table**, where we see all the genes participating in this process listed.

KEGG Pathways

Diagrams of molecular interactions, reactions, and relations.

Signals

Inputs:

• Data

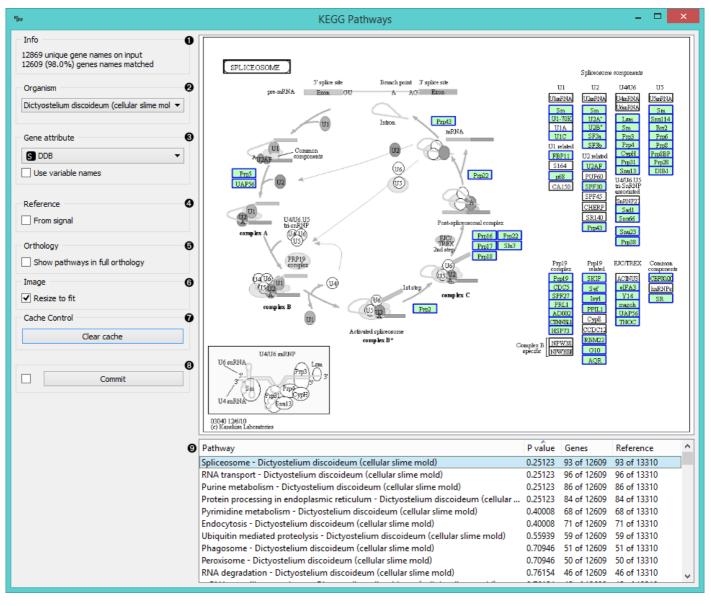
Data set.

• Reference

Referential data set.

Outputs:

Selected Data


Data subset.

Unselected Data

Remaining data.

Description

KEGG Pathways widget displays diagrams of molecular interactions, reactions and relations from the <u>KEGG Pathways Database</u>. It takes data on gene expression as an input, matches the genes to the biological processes and displays a list of corresponding pathways. To explore the pathway, the user can click on any process from the list or arrange them by P-value to get the most relevant processes at the top.

- 1. Information on the input and the ratio of matched genes.
- 2. Select the organism for term analysis. The widget automatically selects the organism from the input data.
- 3. Set the attribute to use for gene names. If gene names are your attribute names, tick Use variable names.
- 4. If you have a separate reference set in the input, tick *From signal* to use these data as reference.
- 5. To have pathways listed and displayed by vertical descent, tick Show pathways in full orthology.
- 6. To fit the image to screen, tick *Resize to fit*. Untick the box if you wish to explore the pathways.
- 7. To clear all locally cached KEGG data, press Clear cache.
- 8. When Auto commit is on, the widget will automatically apply the changes. Alternatively press Commit.
- 9. A list of pathways either as processes or in full orthology. Click on the process to display the pathway. You can sort the data by P-value to get the most relevant results at the top.

🖉 v: latest 🔻

MA Plot

Visualization of intensity-dependent ratios of raw microarray data.

Signals

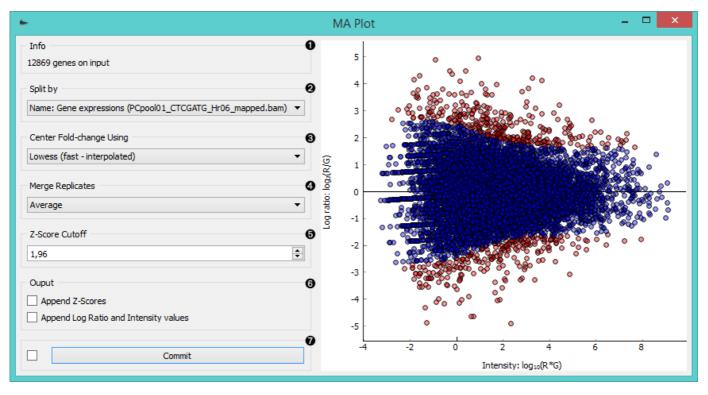
Inputs:

• Expression Array

DNA microarray.

Outputs:

Normalized Expression Array

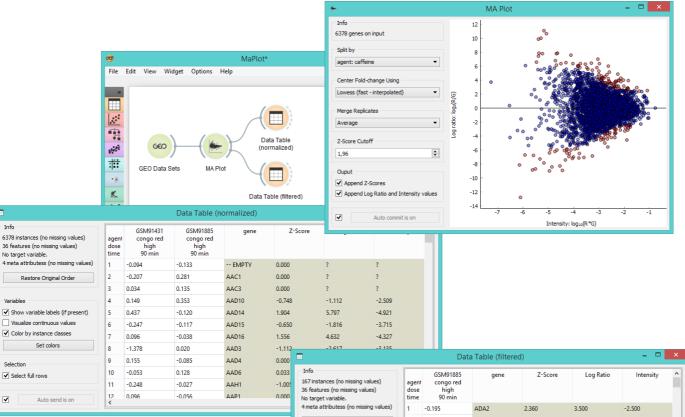

Lowess-normalized microarray.

• Filtered Expression Array

Selected instances (in the Z-score cutoff).

Description

MA Plot is a graphical method for visualizing intensity-dependent ratio of raw mircoarray data. The A represents the average log intensity of the gene expression (x-axis in the plot), while M stands for the binary log of intensity ratio (y-axis). The widget outputs either normalized data (Lowess normalization method) or instances above the Z-score cut-off line (instances with meaningful fold changes).


- 1. Information on the input data.
- 2. Select the attribute to split the plot by.
- 3. Center the plot using:

- average
- Lowess (fast-interpolated) normalization method
- **Lowess** normalization method
- 4. Merge replicated by:
 - average
 - median
 - geometric mean
- 5. Set the **Z-score cutoff** threshold. Z-score is your confidence interval and it is set to 95% by default. If the widget is set to output *filtered expression array*, instances above the <u>Z-score</u> threshold will be in the output (red dots in the plot).
- 6. Ticking the *Append Z-scores* will add an additional meta attribute with Z-scores to your output data. Ticking the *Append Log ratio and Intensity values* will add two additional meta attributes with M and A values to your output data.
- 7. If *Auto commit is on*, the widget will automatically apply changes to the output. Alternatively click *Commit*.

MA Plot is a great widget for data visualization and selection. First we select *Caffeine effect: time course and dose response* data from the **GEO Data Sets** widget and feed it to **MA Plot**. In the plot we see intensity ratios for a selected experiment variable.

We often need to normalize the experiment data to avoid systematic biases, thus we select *Lowess (fast-interpolated)* in the *Center Fold-change* box. By ticking both boxes in the *Output* subsection, we get three new meta attributes appended - Z-score, Log ratio and Intensity. We see these new attributes and normalized instances in the **Data Table** (normalized).

Another possible output for the MA plot widget is *Filtered expression array*, which will give us instances above the Z-score cutoff threshold (red dots in the plot). We observe these instances the **Data Table** (filtered).

Info

Variables

Selection

Restore Original Order 2 -0.154 ADE12 2.096 5.585 -3.425 3 0.068 ADR1 -2.262 -2.735 -1.747 0.387 AKR2 2.507 3.103 -1.986 Variables 4 Show variable labels (if present) 5 ANP1 6.379 -3.289 -0.138 2.456 Visualize continuous values 6 0.027 ANS1 -2.097 -2.534 -1.748 Color by instance classes 7 -0.119 ARE2 -2.312 -6.514 -3.756 Set colors 8 -0.028 ARG1 2.239 4.247 -2.882 ASE1 2.172 6.314 -4.012 9 0.225 Selection 2.657 3.682 ASF2 -2.360 10 -0.065 Select full rows 11 0.319 ASP3-1 -1.969 -2.581 -2.175 12 < 0.573 BAG7 2,721 3,702 Auto send is on 🖉 v: latest 🗸

^

PIPAx

Gives access to **PIPA** databases.

Signals

Inputs:

• (None)

Outputs:

• Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding option is chosen, the average of multiple replicates.

Description

PIPAx is a widget for a direct access to **PIPA** database. It is very similar to the **GenExpress** and **GEO Data Sets** widgets as it allows you to download the data from selected experiments.

7			PIPAx					×
Reload	Û	Search 🕑						
Clear cache	0							
Experiment Sets	0	Name	Species	Strain	Genotype	Growth	Timepoint	^
Experiment deta	9	abcA10(1) 0Hr	Dictyostelium discoideum	AX4	abcA10-	HL5	0	
		abcA10(2) 0Hr	Dictyostelium discoideum	AX4	abcA10-	HL5	0	
		abcA11(1) 0Hr	Dictyostelium discoideum	AX4	abcA11-	HL5	0	
		abcA11(2) 0Hr	Dictyostelium discoideum	AX4	abcA11-	HL5	0	
		abcA3(1) 0Hr	Dictyostelium discoideum	AX4	abcA3-	HL5	0	
		abcA3(2) 0Hr	Dictyostelium discoideum	AX4	abcA3-	HL5	0	
		abcA4(1) 0Hr	Dictyostelium discoideum	AX4	abcA4-	HL5	0	
		abcA4(2) 0Hr	Dictyostelium discoideum	AX4	abcA4-	HL5	0	
		abcA5(1) 0Hr	Dictyostelium discoideum	AX4	abcA5-	HL5	0	
		abcA5(2) 0Hr	Dictyostelium discoideum	AX4	abcA5-	HL5	0	
		abcA6(1) 0Hr	Dictyostelium discoideum	AX4	abcA6-	HL5	0	
+ Update	_	abcA6(2) 0Hr	Dictyostelium discoideum	AX4	abcA6-	HL5	0	
		abcA7(1) 0Hr	Dictyostelium discoideum	AX4	abcA7-	HL5	0	
		abcA7(2) 0Hr	Dictyostelium discoideum	AX4	abcA7-	HL5	0	
Sort output columns	4	abcA9(1) 0Hr	Dictyostelium discoideum	AX4	abcA9-	HL5	0	
Strain		abcA9(2) 0Hr	Dictyostelium discoideum	AX4	abcA9-	HL5	0	
	T	abcB1(1) 0Hr	Dictyostelium discoideum	AX4	abcB1-	HL5	0	
Experiment		abcB1(2) 0Hr	Dictyostelium discoideum	AX4	abcB1-	HL5	0	
Genotype		abcB4(1) 0Hr	Dictyostelium discoideum	AX4	abcB4-	HL5	0	
Timepoint	L	abcB4(2) 0Hr	Dictyostelium discoideum	AX4	abcB4-	HL5	0	
		abcB5(1) 0Hr	Dictyostelium discoideum	AX4	abcB5-	HL5	0	
+ -		abcB5(2) 0Hr	Dictyostelium discoideum	AX4	abcB5-	HL5	0	
		abcC12(1) 0Hr	Dictyostelium discoideum	AX4	abcC12-	HL5	0	
	-	abcC12(2) 0Hr	Dictyostelium discoideum	AX4	abcC12-	HL5	0	
Expression Type	0	abcC13(1) 0Hr	Dictyostelium discoideum		abcC13-	HL5	0	
RPKM + mapability expression (polyA)	-	abcC13(2) 0Hr	Dictyostelium discoideum		abcC13-	HL5	0	
		abcC14(2) 0Hr	Dictyostelium discoideum	AX4	abcC14-	HL5	0	
Exclude labels with constant values	6	abcC2(1) 0Hr	Dictyostelium discoideum		abcC2-	HL5	0	
		abcC2(2) 0Hr	Dictyostelium discoideum	AX4	abcC2-	HL5	0	
Average replicates (use median)		abcC3(2) 0Hr	Dictyostelium discoideum	AX4	abcC3-	HL5	0	
Logarithmic (base 2) transformation		abcC6(1) 0Hr	Dictyostelium discoideum	AX4	abcC6-	HL5	0	
Commit	Ø	abcC6(2) 0Hr	Dictyostelium discoideum		abcC6-	HL5	0	
		abcC8(1) 0Hr	Dictyostelium discoideum		abcC8-	HL5	0	
Authentication	0	abcC8(2) 0Hr	Dictyostelium discoideum		abcC8-	HL5	0	
Username:		abcD2(2) 0Hr	Dictyostelium discoideum		abcD2-	HL5	0	
Password:		abcF1(1) 0Hr	Dictyostelium discoideum	AX4	abcF1-	HL5	0	
rasworu.		abcF1(2) 0Hr	Dictyostelium discoideum		abcF1-	HL5	0	5
		shcE2(1) 0∐r	Dictroctalium discoidaum	AV4	abeE2-		0	¥

- 1. Reloads the experiment data.
- 2. The widget will save (cache) downloaded data, which makes them also available offline. To reset the widget click Clear cache.
- 3. Use Experiment Sets to save a selection: select the experiments, click the "+" button and name the set. To add experiments to the set, click on its name, select additional experiments and click Update. To remove the set click "-".
- 4. In Sort output columns set the attributes by which the output columns are sorted. Add attributes with a "+" button and remove them with "-". Switch the sorting order with arrows on the right.
- 5. Set the expression type for your output data.
 - Raw expression outputs raw experiment data
 - RPKM expression outputs data in reads per kilobase of transcript per million mapped reads
 - **RPKM expression + mapability expression** uses similar normalization, but divides with gene mapability instead of exon lengths.

The polyA variants use only polyA (mRNA) mapped hits.

6. Exclude labels with constant values removes attribute labels that are the same for all selected experiments from the output data.

Average replicates (use median) averages identical experiments by using medians as values. **Logarithmic (base 2) transformation** computes the $\log_2(value+1)$ for each value.

- 7. Click Commit to output selected experiments.
- 8. Log in to access private data.
- 9. Experiments can be filtered with the *Search* box. To select which attributes to display right-click on the header. To select multiple experiments click them while holding the *Control/Command* key.

In the schema below we connected **PIPAx** to **Data Table**, **Set Enrichment**, and **Distance Map** (through **Distances**) widgets.

				P	PIPAx							×					
Reload	Search																
Clear cache																	
operiment Sets	Name	Species		Strain	Experiment	Genotype	Treatment	Growth	Timepoint	Replicate	ID	^					
iper ment sets	 abcG22(1) 12Hr 		n discoideum		ABC project	abcG22-	none	HL5	12	1	D601_M						
	 abcC2(2) 18Hr 		n discoideum	AX4	ABC project	abcC2-	none	HL5	18	2	D340_M						
xample	 abcA9(2) 12Hr 	Dictyosteliur	n discoideum	AX4	ABC project	abcA9-	none	HL5	12	2	D286_M						
example 2	 abcG15(2) 18Hr 		n discoideum		ABC project	abcG15-	none	HL5	18	2	D378_M						
	abcA3(1) 6Hr abcG6(2) 0Hr		n discoideum n discoideum		ABC project	abcA3- abcG6-	none	HL5	6	1	D528_M D663_M						_ 0
	abcG0(2) 0Hr		n discoideum n discoideum		ABC project ABC project	abcG22-	none	HL5 HL5	0	2	D592_M			pij	bax		
	abcA4(2) 12Hr		n discoideum		ABC project	abcA4-	none	HL5	12	2	D647 M	v	iew Widget Opt	tions Help			
	abcA5(1) 12Hr	Dictyosteliur	n discoideum		ABC project	abcA5-	none	HL5	12	1	D453_M						
	abcH2(2) 18Hr	Dictyosteliur	n discoideum	AX4	ABC project	abcH2-	none	HL5	18	2	D415_M						
	abcG5(2) 0Hr		n discoideum		ABC project	abcG5-	none	HL5	0	2	D680_M						
Update –	abcF1(1) 12Hr		n discoideum		ABC project	abcF1-	none	HL5 HL5	12	1	D361_M						
	abcG7(2) 6Hr AX4_on_k.a_12Hr_bi	Dictyosteliur	n discoideum	AX4	ABC project Dd_Dp_genome_biology	abcG7-	none	KA	12	2	D593_M D6_M1						
ort output columns	abcG10(2) 6Hr		n discoideum		ABC project	abcG10-	none	HL5	6	2	D436 M		/	Data Table			
	NC4_Heavy_bio2		n discoideum		Dd_Dp_genome_biology		Heavy(Prespore)		16	2	D30_M1		/	Data Table			
train	NC4_Light_bio1	Dictyosteliur	n discoideum	NC4	Dd_Dp_genome_biology	wildtype	Light(Prestalk)	KA	16	1	D37_M1						
periment	abcA5(2) 0Hr		n discoideum		ABC project	abcA5-	none	HL5	0	2	D459_M		-				
enotype	abcA3(2) 0Hr		n discoideum		ABC project	abcA3-	none	HL5 HL5	0	2	D531_M		°à /	14.			
mepoint 1	abcF1(2) 18Hr abcC12(2) 6Hr		n discoideum n discoideum		ABC project ABC project	abcF1- abcC12-	none	HL5 HL5	18	2	D490_M D181_M		PIPAx	Set Enrichmer			
	NC4 Heavy bio1		n discoideum n discoideum		Dd_Dp_genome_biology		Heavy(Prespore)		16	1	D181_M D35_M1		rinax	SetEnrichmer			
	abcG15(2) 0Hr		n discoideum		ABC project	abcG15-	none	HL5	0	2	D374_M		\				
	abcB5(2) 12Hr	Dictyosteliur	n discoideum	AX4	ABC project	abcB5-	none	HL5	12	2	D289_M				500		
opression Type	abcB5(2) 0Hr		n discoideum	AX4	ABC project	abcB5-	none	HL5	0	2	D277_M			$\langle \Delta \rangle$			
PKM + mapability expression (polyA) •	abcC6(2) 0Hr		n discoideum		ABC project	abcC6-	none	HL5	0	2	D325_M						
	abcC13(2) 18Hr abcG22(1) 6Hr		n discoideum n discoideum		ABC project ABC project	abcC13- abcG22-	none	HL5 HL5	18 6	2	D631_M D609_M			Distances	Distance May	p	
Exclude labels with constant values	AX4 on HL5 OHr bit			AV4	Dd De sessens history	aucuzz*	none	LIS	0	2	D009_M						
Average replicates (use median)	abcG5(1) 0Hr	Dictyost							Set Enrichme	ent						×	
ogarithmic (base 2) transformation	abcG2(1) 18Hr	Dictyost	Info			_											
Commit	abcA10(1) 6Hr	Dictyost				 Entities 	3 🗘 🗹 p-valu	e 0,010	0 🗘 🗹 FDR	0,0100 🗘 Fi	ter						
uthentication	abcG15(2) 6Hr		12869 unique n 12736 (99.0%)	ames on input	natched	Category	Term				Count	Referen	ce count p-v	alue FDR	Enrichment	^	
	AX4_on_k.a_20Hr_bi abcA3(2) 18Hr	Dictyoste					r_function lyase act	ivity			89 (0.709) 89	0.64%) 4.26	-04 0.00598			>
ername:	abcA3(2) 18Hr abcC2(1) 0Hr	Dictyoste	Species								90 (0.719			-04 0.00551			
issword:								active transm									
	abcD2(1) 6Hr		Dictyostelium o	discoideum AX4	•		r_function primary			orter activity	101 (0.79		(0.73%) 5.94 (0.73%) 1.54	-04 0.00230			
	abcD2(1) 6Hr			discoideum AX4	4 •	GO, molecula	function molecula	er transducer		orter activity		6) 101					
		Dictyost	Entity names		1 -	GO, molecula GO, molecula	r_function molecula r_function nucleotic	er transducer de binding		orter activity	101 (0.79 1318 (10.3	6) 101 5%) 1319	(0.73%) 1.5e (9.49%) 4.7e	-51 7.0e-49			
		Dictyost			• •	GO, molecula GO, molecula GO, molecula	r_function molecula r_function nucleotion r_function peptidas	er transducer de binding e activity	activity	orter activity	101 (0.79 1318 (10.3 212 (1.66	6) 101 5%) 1319 6) 212	(0.73%) 1.5e (9.49%) 4.7e (1.53%) 8.5e	e-51 7.0e-49 e-09 2.1e-07			
		Dictyost	Entity names		• •	GO, molecula GO, molecula GO, molecula GO, molecula	r_function <u>molecula</u> r_function <u>nucleotia</u> r_function <u>peptidas</u> r_function <u>substrate</u>	er transducer de binding e activity e specific tran	activity sporter activity	orter activity	101 (0.79 1318 (10.3 212 (1.66 193 (1.52)	6) 101 5%) 1319 6) 212 6) 193	(0.73%) 1.5e (9.49%) 4.7e (1.53%) 8.5e (1.39%) 4.6e	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06			
		Dictyost	Entity names Entity featur	e	• •	GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula	r_function <u>molecula</u> r_function <u>nucleotia</u> r_function <u>peptidas</u> r_function <u>substrate</u> r_function <u>adenyl n</u>	er transducer de binding e activity e specific tran	activity sporter activity	oneractivity	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79)	6) 101 5%) 1319 6) 212 6) 193 6) 865	(0.73%) 1.5e (9.49%) 4.7e (1.53%) 8.5e (1.39%) 4.6e (6.23%) 1.7e	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32			
		Dictyost	Entity names Entity featur	e	•	GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula	r_function molecula r_function nucleotia r_function peptidas r_function substrate r_function adenyl n r_function binding	er transducer de binding e activity erspecific tran ucleotide bin	activity Isporter activity ding	oneractivity	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0	6) 101 5%) 1319 6) 212 6) 193 6) 865 5%) 3192	(0.73%) 1.5e (9.49%) 4.7e (1.53%) 8.5e (1.39%) 4.6e (6.23%) 1.7e (22.98%) 1.1e	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124			
		Dictyost	Entity names Entity featur DDB	e	• •	GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula	r_function molecula r_function nucleotia r_function peptidas r_function substrate r_function adenyl n r_function binding r_function pyropho	e activity e activity specific trar ucleotide bin	activity isporter activity ding vity		101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67)	6) 101 5%) 1319 6) 212 6) 193 6) 865 1%) 3192 6) 340	(0.73%) 1.5 (9.49%) 4.7 (1.53%) 8.5 (1.39%) 4.6 (6.23%) 1.7 (22.98%) 1.1 (2.45%) 9.9	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124 e-14 3.8e-12			
		Dictyost	Entity names Entity featur DDB Use feature Reference	e	• •	GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula GO, molecula	r-function <u>molecula</u> r-function <u>nucleotia</u> r-function <u>peptidas</u> r-function <u>substrate</u> r-function <u>adenyl n</u> r-function <u>binding</u> r-function <u>nucleosia</u>	er transducer de binding e activity ::specific trar ucleotide bin sphatase acti de-triphosph	activity isporter activity ding vity atase regulator as	ctivity	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82)	6) 101 5%) 1319 6) 212 6) 193 6) 865 5%) 3192 6) 340 6) 105	(0.73%) 1.54 (0.73%) 1.54 (0.73%) 4.54 (1.53%) 8.55 (1.39%) 4.66 (6.23%) 1.74 (22.98%) 1.14 (2.45%) 9.94 (0.76%) 1.04	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124 e-14 3.8e-12 e-04 0.00167			
		Dictyost Dicture	Entity names Entity featur S DDB Use feature Reference All entities	e e names	•	60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula	refunction molecula refunction nucleotia refunction peptidas refunction substrate refunction adenut no refunction propho refunction pyropho refunction hydrolas	ar transducer de binding <u>e activity</u> ::specific trar ucleotide bin sphatase acti de-triphosph e activity, acti	activity isporter activity ding vity atase regulator ac ing on acid anhyr	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82) 342 (2.69)	6) 101 5%) 1319 6) 212 6) 193 6) 865 5%) 3192 6) 340 6) 105 6) 342	(0,73%) 1.54 (0,73%) 4.74 (1,53%) 8.55 (1,39%) 4.66 (6,23%) 1.74 (22,98%) 1.14 (2,45%) 9.94 (0,76%) 1.04 (2,46%) 8.34	e-51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124 e-14 3.8e-12 e-04 0.00167 e-14 3.3e-12			
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference	e e names	•	60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula	refunction molecula refunction nucleotia refunction peptidas refunction substrate refunction adenyt no refunction pyropho refunction hydrolas refunction P-P-bon	ar transducer de binding e activity ::specific trar ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrolysis:	activity Isporter activity ding vity atase regulator as ing on acid anhyr driven transmem	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.71)	6) 101 5%) 1319 6) 212 6) 193 6) 865 8%) 3192 6) 340 6) 105 6) 342 7) 90	(0.73%) 1.5.5 (9.49%) 4.76 (1.53%) 8.56 (1.39%) 4.66 (6.23%) 1.76 (22.98%) 1.16 (2.45%) 9.96 (0.76%) 1.00 (2.45%) 8.34 (0.65%) 3.96	51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124 e-04 0.00167 e-14 3.3e-12 e-04 0.00551			
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference All entities Reference :	e e names	• •	60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula 60, molecula	rrfunction molecula rrfunction nucleotia rrfunction substrate rrfunction substrate rrfunction binding rrfunction binding rrfunction pyropho rrfunction nucleosis rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rrfunction pyropho rfunction pyropho rfunct	er transducer de binding e activity specific trar ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrolysis- unsducer acti	activity Isporter activity ding vity atase regulator ac ing on acid anhyi driven transmem rity	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.719 101 (0.79)	6) 101 6) 1319 6) 212 6) 193 6) 865 8%) 3192 6) 340 6) 105 6) 342 6) 90 6) 101	(0.73%) 1.55 (9.49%) 4.76 (1.53%) 8.56 (1.39%) 4.66 (6.23%) 1.77 (22.98%) 1.16 (2.45%) 9.94 (0.76%) 1.04 (2.45%) 9.94 (0.76%) 3.94 (0.75%) 3.94 (0.75%) 3.94	51 7.0e-49 e-09 2.1e-07 e-08 1.1e-06 e-34 1.3e-32 e-127 1.0e-124 e-14 3.8e-12 e-04 0.00167 e-14 3.3e-12 e-04 0.00551 e-04 0.00230			
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference All entities Reference : Entity Sets	e e names	•	60, molecula 60, molecula	r function molecular r function nucleotia r function substats r function substats r function substats r function substats r function binding r function nucleosi r function nucleosi r function hydrolas r function hydrolas r function signal tat r function signal tat	er transducer de binding e activity specific trar ucleotide bin sphatase actir de-triphosph e activity, acti d-hydrolysis- unsducer actir bonucleotide	activity Isporter activity ding vity atase regulator ac ing on acid anhyi driven transmem rity	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.71) 101 (0.79) 864 (6.78)	a) 101 150) 1319 a) 212 a) 193 b) 865 150) 3192 a) 340 a) 105 a) 342 a) 90 b) 101 b) 864	(0.73%) 1.5.5 (9.49%) 4.76 (1.53%) 8.55 (1.39%) 4.66 (6.23%) 1.76 (2.28%) 1.00 (2.46%) 8.33 (0.65%) 3.94 (6.22%) 1.84				
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference All entities Reference : Entity Sets Category	e e names set (input)	• • •	60, molecula 60, molecula	r function moleculation r function nucleotition r function substatation r function substatation r function substatation r function propho r function nucleosis r function nucleosis r function hydrolas r function function r function signal tax r function denyt in r function denyt in r function denyt in r function denyt in	er transducer de binding e.activity ::specific trar ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrolysis- insducer acti bonucleotide activity	activity sporter activity ding vity atase regulator as ing on acid anhy driven transment driven transment drive binding	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.719) 101 (0.79) 864 (6.78) 87 (0.689)	a) 101 a%a) 1319 a%b) 212 b) 212 a) 193 b) 865 2%b) 3192 a) 340 a) 340 a) 340 a) 342 b) 342 b) 101 a) 864 b) 87	0.73%) 1.5.7 (9.49%) 4.74 (1.33%) 8.5.6 (1.33%) 4.64 (2.2.98%) 1.77 (2.2.98%) 1.00 (2.45%) 9.94 (0.75%) 1.00 (2.45%) 3.94 (0.75%) 3.94 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.75%) 1.54 (0.63%) 5.16	+:51 7.0e-49 e:09 2.1e-07 e:08 1.1e-06 e:34 1.3e-32 e:127 1.0e-124 e:04 0.00167 e:14 3.3e-12 e:04 0.00230 e:04 0.00251 e:04 0.00252 e:34 1.4e-32 e:04 0.00706			
		Dictyost Dicture	Entity names Entity featur DDB Use feature All entities Reference Entity Sets Category Category Category	e : names set (input) base	• •	GO, molecula GO, molecula	r function moleculi r function successive r function septidas r function substate r function substate r function substate r function pyropho r function pyropho r function pyropho r function pyropho r function pyropho r function septidas r function septidas	er transducer de binding e activity :: specific trar ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrolysis- msducer acti bonucleotide activity vric ester hydr	activity sporter activity ding vity atase regulator as tase regulator as ding on acid anhy driven transmem dty binding olase activity	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66' 193 (1.52' 865 (6.79' 3487 (25.0) 340 (2.67' 105 (0.82' 342 (2.69' 90 (0.71') 101 (0.79' 864 (6.78' 87 (0.68') 131 (1.33'	a) 101 b) 1319 b) 212 b) 193 b) 865 193 3192 b) 340 b) 105 b) 342 b) 90 b) 101 b) 864 b) 87 b) 131	0.73%) 1.5.7 (9.49%) 4.7.7 (153%) 8.5 (153%) 4.64 (6.23%) 1.7 (22.98%) 1.7 (2.45%) 9.94 (0.76%) 1.04 (2.45%) 9.34 (0.75%) 1.36 (0.75%) 1.36 (0.73%) 1.54 (0.63%) 5.14 (0.63%) 1.14 (0.64%) 1.14	1 7.0e-49 00 2.1e-07 00 2.1e-07 00 1.1e-06 01 1.1e-06 02 1.1e-06 03 1.1e-06 04 1.3e-32 1-127 1.0e-124 1-14 3.8e-12 1-04 0.00167 1-14 3.3e-12 1-04 0.00551 1-04 0.00230 1-34 1.4e-32 1-04 0.00260 1-34 1.4e-32 1-04 0.00250 1-34 1.4e-32 1-04 0.00260			
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference All entities References Entity Sets Category Category Dictyl	e e names set (input)	•	G0, molecula G0, molecula	r function molecula r function nucleotist r function substate r function substate r function substate r function substate r function substate r function pyropho r function pyropho r function hydrolas r function ingoal tor r function signal t	er transducer de binding e activity ::specific trar ucleotide bin sphatase acti de-triphosphe e activity, acti d-hydrolysis: insducer acti bonucleotide activity ric. ester hydr ansferase acti	activity sporter activity ding rity atase regulator ass ing on acid anhyrd diven transmen rity binding olase activity vity	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.6) 340 (2.67) 340 (2.67) 342 (2.69) 90 (0.719) 101 (0.79) 864 (6.78) 87 (0.682) 131 (1.03)	a) 101 b) 1319 b) 212 b) 193 b) 865 193 3192 b) 340 b) 105 b) 340 b) 90 b) 011 b) 864 b) 87 b) 131 b) 131	(0.73%) 1.5.7 (9.49%) 4.7.7 (1.53%) 8.5 (6.23%) 1.74 (1.33%) 4.66 (6.23%) 1.74 (2.298%) 1.14 (2.45%) 9.94 (0.67%) 1.04 (2.45%) 1.04 (0.65%) 3.94 (6.22%) 1.84 (0.63%) 5.14 (0.94%) 1.74 (0.95%) 3.34				
		Dictyost Dicture	Entity names Entity featur DDB Use feature All entities Reference Entity Sets Category A Dictyi V Dictyi A O Dictyi	e : names set (input) base henotypes	•	GQ, molecula GQ, molecula	r function moleculi r function gettidas r function gettidas r function gettidas r function substats r function substats r function binding r function purpeho r function purpeho r function purpeho r function purpeho r function purpeho r function data function r function data function data function d	ir transducer de binding e activity especific trar ucleotide bin sphatase acti de triphosph e activity, acti d-hydrolysis- nisducer acti- bonucleotide activity vric ester hydr ansferase act- coside bindin	activity sporter activity ding vity tatase regulator ac ing on acid anhys driven transmem vity binding olase activity vity g	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0 340 (2.67) 340 (2.67) 90 (0.719) 101 (0.79) 864 (6.78) 87 (0.689) 131 (1.03) 118 (0.03) 1090 (8.56)	a) 101 b) 111 b) 212 a) 193 a) 865 b) 3192 a) 342 b) 342 b) 90 a) 101 a) 864 b) 87 a) 111 a) 1090	(0.73%) 1.5.4 (9.43%) 4.7.7 (1.53%) 8.54 (1.53%) 4.64 (6.23%) 1.7.7 (2.2.98%) 1.76 (2.2.98%) 1.76 (2.2.45%) 9.94 (0.75%) 1.04 (0.65%) 3.94 (0.65%) 1.84 (0.63%) 5.14 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34 (0.85%) 3.34	1 7.0e-49 2:1e-07 2:1e-07 e:08 1.1e-06 e:12 1.3e-32 e:127 1.0e-124 e:14 3.3e-12 e:04 0.00167 e:14 3.3e-12 e:04 0.00251 e:04 0.00251 e:04 0.00251 e:04 0.00706 e:05 5.8e-04 e:05 5.8e-04			
		Dictyost Dicture	Entity names Entity featur DDB Use feature Reference All entities Reference Entity Sets Category A O Dictyi G GO V Dictyi	e : names set (nput) base henotypes iological_proc		GQ, molecula GQ, molecula	r function moleculi r function publication r function explicitation r function explicitation r function substate r function binding r function huderation r function nucleosis r function publication r function signal fut r function adenyl ri r function moleculi r function moleculi r function moleculi r function moleculi r function moleculi r function moleculi	ir transducer de binding e activity urspecific trar ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrolysis- misducer acti bonucleotide activity inic ester hydr ansferase acti coside bindin frate derivati	activity isporter activity ding vity atase regulator as ing on acid anhys divien transment divien transment divien transment vity binding olase activity vity g ce binding	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.719) 864 (6.78) 87 (0.68) 131 (1.03) 118 (0.93) 118 (0.93) 1128 (8.86)	a) 101 b) 1319 b) 212 b) 193 b) 865 b) 3192 b) 340 b) 101 b) 342 b) 90 b) 101 b) 864 b) 87 b) 1118 b) 1128	(0.73%) 1.5.4 (9.49%) 4.7.7 (1.53%) 8.47.7 (1.33%) 8.46 (6.23%) 1.7.7 (2.298%) 1.7 (2.298%) 1.7 (2.298%) 1.8 (0.75%) 3.94 (0.75%) 3.94 (0.73%) 1.84 (0.63%) 5.16 (0.63%) 5.14 (0.63%) 5.14 (0.63%) 5.14 (0.65%) 3.34 (7.85%) 3.14	Star Star Star 1 7.0e-49 2.1e-07 0:0 2.1e-07 1.0e-124 1:1e-06 1.1e-06 1.0e-124 1:1e-14 3.8e-12 1.0e-124 1:0:0 0.00167 1.1e-06 1:0:0 0.00167 1.4e-32 1:0:4 0.00230 2:34 1:4:3 1.4e-32 1.0e-04 0:0:5 5.8e-04 2.5e-04 1:4:43 1.4e-43 1.4e-43			
		Dictyost Dicture	Entity names Entity feature Entity feature Sologo Use feature All entities Category A Dictyl A GO V bi V cologo V bi	e e names set (nput) base henotypes iological_proc		GQ, molecula GQ, molecula	r function moleculi r function cucleation r function explicits r function substrats r function substrats r function substrats r function binding r function pyropho r function pyropho r function pyropho r function pyropho r function pyropho r function different r function different	ir transducer te binding e activity "specific trans- specific trans- de-triphosph e activity, acti de-triphosph e activity, acti de-triphosph e activity, acti de-triphosph benucleotide activity ric ester hydr ansferase acti activity ric ester hydr ansferase acti- activity ric ester hydr activity ric ester hydr acti	sporter activity ding rity atase regulator as ng on acid anhy driven transmern driven transmern dri driven transmern driven t	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.715 90 (0.715) 84 (6.78) 131 (1.03) 118 (0.93) 118 (0.93) 118 (0.93) 1128 (8.66) 2017 (15.8)	a) 101 b) 101 b) 212 a) 193 b) 212 a) 193 b) 865 b) 865 a) 340 a) 340 a) 340 b) 342 b) 342 b) 310 a) 101 a) 864 b) 87 a) 1131 a) 118 b) 1090 b) 1092	(0,73%) 1.5.4 (9,49%) 4.7.7 (1,337a) 8.47.7 (1,337a) 8.46.6 (6,23%) 1.7.7 (2,2.89%) 1.7.7 (2,2.89%) 1.7.7 (2,2.89%) 1.7.7 (2,2.89%) 1.7.6 (2,2.89%) 1.7.6 (2,2.89%) 1.8.6 (0.75%) 1.9.6 (6,22%) 1.8.2 (0.65%) 3.44 (0.65%) 3.44 (0.94%) 1.16 (1.4,54%) 3.24 (1.4,54%) 3.24	51 7.0e-49 0:09 2.1e-07 0:08 1.1e-06 1:3e-32 1.3e-32 1:127 1.0e-124 0:01 0.00167 1:14 3.3e-12 0:00 0.000551 0:000051 0.000250 0:000056 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250			
	-167.707.44e	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e : names set (input) base henotypes iological_proce liolar_compo		GO, molecula GO, molecula	r function moleculi refunction nucleositi refunction substated refunction substated refunction substated refunction substated refunction binding refunction nucleositi refunction nucleositi refunction performan refunction signal to refunction signal to refunction signal refunction s	In transducer te binding te activity respecific trans- ucleotide bin sphatase acti- de-triphosph activity activity activity activity ricester hydra ansferase acti- coside bindin drate derivati- clic compour brans trans- drate derivati- clic	sectivity ding dity dity tase regulator as ing on acid anhyr driven transmen driven transmen dri driven transm	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.719) 864 (6.78) 87 (0.68) 131 (1.03) 118 (0.93) 118 (0.93) 1128 (8.86)	a) 101 b) 101 b) 212 a) 193 b) 212 a) 193 b) 865 b) 865 a) 340 a) 340 a) 340 b) 342 b) 342 b) 310 a) 101 a) 864 b) 87 a) 1131 a) 118 b) 1090 b) 1092	(0.73%) 1.5.5 (9.49%) 47.7 (1.53%) 45.5 (1.53%) 45.5 (1.23%) 45.6 (6.23%) 1.7 (2.29.8%) 1.1 (2.24%) 9.9 (2.26%) 1.0 (2.45%) 3.9 (0.75%) 1.0 (0.75%) 1.0 (0.75%) 1.1 (0.05%) 3.3 (7.85%) 3.1 (14.54%) 3.2 (1.58%) 45.6 (1.58%) 45.6	S1 7.0e-49 c:09 2.1e-07 c:08 1.1e-06 e:04 1.3e-32 e:127 1.0e-124 e:04 0.00167 e:14 3.3e-12 e:04 0.00230 e:34 1.4e-32 e:04 0.00230 e:34 1.4e-32 e:04 0.05 e:05 2.0e-04 e:05 5.8e-04 e:43 1.4e-41 e:45 4.2e-43 e:77 8.4e-75 e:09 1.4e-70			
ŝ	-¥IFE 1076-44-	Dictyost Dicture	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e : names set (input) base henotypes iological_proce liolar_compo		GO, molecula GO, molecula	r junction molecular r junction nucleosit r junction substate r junction signal tr r junction signal tr r junction signal tr r junction signal tr r junction shiftsian r junction shiftsi r junction shiftsian r junction shiftsian r junction s	In transducer, te binding e activity ispecific trans- specific trans- specific trans- specific trans- specific trans- specific trans- specific trans- specific trans- te activity, acti- d-hydrobysis: insiducer acti- bonucleotide activity ric ester hydra ansferase acti- topic action frate derivati- clic compour morane trans- segulator acti-	sporter activity ding vity tase regulator as mg on acid anhys driven transmen dity binding obses activity obses activity se binding occlear activity dity colored activity	ctivity drides	101 (0.79) 1318 (10.3 212 (1.66) 193 (1.52) 865 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 342 (2.69) 90 (0.715 90 (0.715) 84 (6.78) 131 (1.03) 118 (0.93) 118 (0.93) 118 (0.93) 1128 (8.66) 2017 (15.8)	a) 101 b) 101 b) 212 a) 193 b) 212 a) 193 b) 865 b) 865 a) 340 a) 340 a) 340 b) 342 b) 342 b) 310 a) 101 a) 864 b) 87 a) 1131 a) 118 b) 1090 b) 1092	(0.73%) 1.5.5 (9.49%) 47.7 (1.53%) 45.5 (1.53%) 45.5 (1.23%) 45.6 (6.23%) 1.7 (2.29.8%) 1.1 (2.24%) 9.9 (2.26%) 1.0 (2.45%) 3.9 (0.75%) 1.0 (0.75%) 1.0 (0.75%) 1.1 (0.05%) 3.3 (7.85%) 3.1 (14.54%) 3.2 (1.58%) 45.6 (1.58%) 45.6	51 7.0e-49 0:09 2.1e-07 0:08 1.1e-06 1:3e-32 1.3e-32 1:127 1.0e-124 0:01 0.00167 1:14 3.3e-12 0:00 0.000551 0:000051 0.000250 0:000056 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250 0:000006 0.000250			-
Eene	-167.707.44e	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e enames set (nput) base henotypes iological_proc ellular_compo olocular_func		GO, molecula GO, molecula	r junction paylada r junction paylada r junction paylada r junction substata r junction substata r junction substata r junction paylada r junction paylada r junction paylada r junction paylada r junction paylada r junction paylada r junction balanda r junction itananasa	In transducer, te binding e activity -specific trar ucleotide bin sphatase acti- de-triphosph a activity, acti- d-hydrolysis- miducer acti- bonucleotide activity nic ester hydr ansferase acti- coside bindin faste derivati- cilic compour- bergulator acti- transferase acti- acti- transferase acti- acti- transferase acti- acti- transferase acti- a	sporter activity sporter activity ding rity atase regulator as inding driven transmen dity binding olese activity vity 9 et ebinding ad binding onter activity dity Info	stinity drides ubrane transpor.	101 (0.79) 1318 (10.3 212 (1.66) 1393 (1.52) 865 (6.79) 3187 (25.0) 340 (2.67) 105 (0.62) 342 (2.69) 90 (0.715) 101 (0.79) 884 (6.78) 87 (0.685) 131 (1.03) 118 (0.93) 118 (0.93	a) 101 b) 101 b) 212 a) 193 a) 865 b) 3192 a) 340 b) 101 a) 342 b) 90 a) 101 b) 864 b) 87 a) 131 a) 118 b) 1050 b) 1128 b) 2020 b) 212	(0,73%) 1.54 (0,73%) 4.77 (1,53%) 5.55 (1,35%) 4.77 (1,35%) 4.67 (2,35%) 1.77 (2,28%) 1.17 (2,28%) 1.17 (2,28%) 1.17 (2,45%) 5.32 (2,45%) 5.33 (0,75%) 1.65 (5,27%) 1.57 (5,622%) 1.57 (51 7.0e-49 c:09 2.1e-07 c:81 1.1e-06 :34 1.3e-32 :127 1.0e-124 :14 3.8e-12 :04 0.00167 :14 3.8e-12 :04 0.00230 :24 1.4e-32 :04 0.00230 :04 0.00706 :05 5.8e-04 :05 5.8e-04 :05 1.4e-31 :42 1.4e-32 :05 1.1e-07 :11 1.1e-07 :12 1.1e-07 :12 0.304/NL_R6	D378, M1, R6	DEGUTINI	-
ŝ	-¥IFE 1076-44-	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e enames set (nput) base henotypes iological_proc ellular_compo olocular_func		GQ, molecula GQ, molecula	r function maleuli r function maleuli r function maleuli (function justicitation (function in substitution r function maleuli r function mal	In transducer, te binding e activity e activity specific tra- specific tra- specific tra- specific tra- specific tra- specific tra- top- tage activity activity activity ansferase acti- cosside bindin drate derivati- disc compound manne trans- regulator acti- transferase a- de-trajhospharent ansferase acti- activity ansferase acti- activity ansferase acti- activity ansferase acti- activity ansferase acti- activity ansferase acti- activity ansferase acti- activity ansferase acti- activity activi	activity sporter activity ding dity tase regulator as mg on acid anhyy diren tanamen dity binding olase activity vity a chinding olase activity tity a chinding d binding d binding d binding tity	stivity drides birane transport.	101 (0.79) 1318 (10.3 212 (1.66) 1318 (15.2) 865 (6.79) 3187 (25.0) 340 (2.67) 340 (2.67) 340 (2.67) 342 (2.69) 90 (0.719) 864 (6.78) 87 (0.68) 110 (0.99) 864 (6.78) 87 (0.68) 1118 (0.93) 1198 (8.86 2017 (15.8) 2017 (15.	a) 101 b) 101 b) 1319 a) 1212 b) 193 a) 212 b) 193 a) 865 b) 342 b) 90 a) 105 a) 400 a) 101 a) 864 b) 371 a) 118 a) 1090 b) 1128 b) 210	0.73%) 1.54 (9.49%) 4.77 (1.53%) 5.55-(3.25%) 4.77 (1.53%) 5.55-(3.25%) 4.66 (3.25%) 1.77 (2.2.98%) 1.77 (2.2.98%) 1.77 (2.2.45%) 6.99 (0.76%) 1.64 (2.45%) 6.99 (0.76%) 1.55 (5.62%) 3.84 (0.55%) 3.99 (0.55%) 3.99	=51 7.0e-49 =60 2.1e-07 =60 2.1e-07 =61 1.1e-06 =74 1.3e-12 =14 3.3e-12 =16 0.00051 =16 0.00051 =16 0.00051 =16 0.00050 =16 0.00050 =16 2.0e-04 =16 3.4e-15 =14 3.4e-15 =14 3.4e-15 =14 3.4e-17 =14 3.4e-17 =14 3.4e-17 =14 3.4e-17 =14	ABC project	ABC project	DDB
<u>s</u> Ben	-sL-A2(113)2	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e e names set (nput) base henotypes liular_compo collecular_func Local_proc liular_compo D286	cess enert tion 6 ML P6	GQ, molecula GQ, molecula	r function maleral (r function pratiatary) (r function apalatary) (r function abuttatary) (r function abuttatary) (r function balance) (r function b	ar transducer, ar transducer, te binding e activity. "specific tran ucleotide bin sphatase acti de-triphosph e activity, acti d-hydrohysis- insducer acti bonucleotide activity. aric ester hydr ansferase acti coside bindin trate derivati clic composu- mirane trans- ggulator acti- transferase acti externational de-triphosph- cotide bindin	sporter activity ding tatx tratae regulator as ng on acid anhy driven transment div binding olase activity wity 9 g.s.binding octas activity wity 1 g.s.binding conter activity wity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity 1 g.s.binding octas activity vity vity vity vity vity vity vit	stivity drides birane transpor. ances (no missing value (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 1318 (15.2) 865 (6.79) 3187 (25.0) 340 (2.67) 340 (2.67) 340 (2.67) 342 (2.69) 90 (0.719) 864 (6.78) 87 (0.68) 110 (0.99) 864 (6.78) 87 (0.68) 1118 (0.93) 1198 (8.86 2017 (15.8) 2017 (15.	a) 101 b) 101 b) 1319 a) 1319 a) 193 a) 193 a) 865 b) 3192 a) 365 a) 3162 b) 30 b) 3102 b) 301 b) 3102 b) 311 a) 1118 b) 1128 b) 2020 b) 210	0.73% 0.15% 0.75\% 0.75\%	=51 7.04-49 =00 2.14-07 =00 1.14-06 =01 1.14-06 =24 1.32-32 =24 1.32-32 =24 1.32-32 =24 1.32-32 =04 0.00167 =127 1.64-164 3.34-12 -044 =040 0.00551 =040 0.00551 =040 0.00551 =040 0.0055 =040 0.0055 =040 0.0005 =05 2.04-04 =040 0.0005 =05 2.04-04 =05 2.04-04 =05 2.04-04 =05 2.04-04 =070 1.44-32 =040 M.76 ABC CPUI (MM .76 ABC CPUI (MM .76 ABC CPUI (MM .76	ABC project abcG15(2) 18Hr	ABC project abcG22(1) 12Hr	DDB
S Ben Nore	ALLA 201 134	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e e names set (nput) base henotypes liular_compo collecular_func Local_proc liular_compo D286		GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity datase regulator at atase regulator at atase regulator at atheres transmen dity binding obses activity wity g at binding obses activity wity g at binding obses activity wity g at binding obses activity the frequent at 1260 at 1260 at 126	ctivity drides ubrane transpot. ances (no missing (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 1318 (25.0 340 (2.67) 340 (2.67) 340 (2.67) 340 (2.69) 90 (0.17) 101 (0.79) 844 (6.78) 87 (0.689) 1131 (1.03) 118 (0.93) 118 (0.93) 118 (0.93) 1128 (8.66) 2017 (15.8 219 (1.72) values) a)	a) 101 5%) 1319 a) 212 b) 193 b) 865 5%a) 3192 c) 3420 b) 90 c) 105 c) 3420 c) 90 c) 101 c) 864 c) 103 c) 103 c) 105 c)	0.73%) 1.54 (9.49%) 4.77 (1.53%) 5.55-(3.25%) 4.67 (1.53%) 4.66 (3.25%) 1.77 (2.2.98%) 1.77 (2.2.98%) 1.77 (2.2.98%) 1.77 (2.2.98%) 1.75 (3.24%) 5.99 (0.76%) 1.66 (3.25%) 3.49 (3.25%) 1.55 (3.22%) 1.85 (3.22%) 1.55 (3.22%) 1.55 (3.25%) 1.5	=51 7.0e-49 =60 2.1e-07 =60 2.1e-07 =61 1.1e-06 =74 1.3e-12 =14 3.3e-12 =16 0.00051 =16 0.00051 =16 0.00051 =16 0.00050 =16 0.00050 =16 2.0e-04 =16 3.4e-15 =14 3.4e-15 =14 3.4e-15 =14 3.4e-17 =14 3.4e-17 =14 3.4e-17 =14 3.4e-17 =14	ABC project	ABC project	DDB
S Ben Nore	-sL-A2(113)2	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e e names set (nput) base henotypes liular_compo collecular_func Local_proc liular_compo D286	cess enert tion 6 ML P6	GQ, molecula GQ, molecula	r function maleral (r function pratiatary) (r function apalatary) (r function abuttatary) (r function abuttatary) (r function balance) (r function b	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity dity tatase regulator as diven transverse diven transverse divent transverse di divent	stinity drides birane transpos. ances (no missing value variable. ributes (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 133 (1.52) 855 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 340 (2.67) 105 (0.82) 347 (2.60) 90 (0.715) 101 (0.79) 844 (6.78) 87 (0.685) 113 (1.03) 113 (a) 101 b) 101 b) 1319 a) 1319 a) 193 a) 193 b) 193 a) 105 a) 342 a) 105 a) 342 b) 342 b) 101 a) 864 b) 118 b) 131 b) 118 b) 1050 b) 128 b) 128 b) 120 c) 2020 c) 2020 c) 210	0.03%0 15, 09.49%0 47, 10.3%0 55, 10.3%0 44, 10.3%0 44, 10.3%0 44, 10.3%0 14, 10.3%0 14, 10.3%0 15, 10.3%0 15, 10.3%0 15, 10.0%50 16, 10.0%50 16, 10	1 7.04-49 -60 2.14-67 -68 1.16-66 -13-12 1.07-13 -127 1.06-114 -127 1.06-114 -14 3.84-12 -04 0.00167 -14 3.84-12 -04 0.00210 -14 3.84-12 -04 0.00210 -14 1.48-24 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -16 2.06-04 -17 8.48-75 -18 1.48-11 -14 3.492 -14 3.492 -17 8.475 -14 3.492 -14 3.492 -14 3.492 -14	ABC project abcG15(2) 18Hr abcG15- HL5 2	ABC project abcG22(1) 12Hr abcG22- HL5 1	DDB
S Ben Nore	ent sorting	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e e names set (nput) base henotypes lological_proc lological_proc lolocular_func D286 D286 D286	cess onent onent o,ML,R6	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity dity tatase regulator as diven transverse diven transverse divent transverse di divent	ctivity drides ubrane transpot. ances (no missing (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 133 (1.52) 855 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 340 (2.67) 105 (0.82) 347 (2.60) 90 (0.715) 101 (0.79) 844 (6.78) 87 (0.685) 113 (0.685) 114 (0.79) 114	a) 101 b) 101 5%) 1319 a) 193 b) 193 a) 865 5%) 3192 a) 30 a) 105 a) 342 b) 90 b) 101 a) 864 b) 87 a) 118 b) 131 a) 1128 b) 000 a) 2020 b) 210	0.73% 0.47\% 0.47\%	-51 7.0x-49 -50 2.1x-07 -51 -52 -54 1.3x-32 -54 1.3x-32 -54 1.3x-32 -54 1.3x-32 -54 1.3x-32 -54 0.0057 -64 0.0057 -64 0.0057 -64 0.0052 -65 2.0x-64 -65 2.0x-64 -65 2.0x-64 -65 3.8x-64 -65 3.8x-65 -64 0.0070 -64 0.007	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid	DDB
Bene None Lew	ALAJOI 1314	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V Dictyi V M	e e names set (nput) base henotypes lological_proc lological_proc lolocular_func D286 D286 D286	cess enert tion 6 ML P6	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity dity tatase regulator as diven transverse diven transverse divent transverse di divent	stinity drides birane transpos. ances (no missing value variable. ributes (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 133 (1.52) 855 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 340 (2.67) 105 (0.82) 347 (2.60) 90 (0.715) 101 (0.79) 844 (6.78) 87 (0.685) 113 (0.685) 114 (0.79) 114	a) 101 b) 101 b) 212 a) 193 a) 865 193 a) a) 340 b) 340 b) 340 b) 340 b) 340 b) 340 b) 342 b) 351 b) 118 b) 1128 b) 219 c) 210 c) 210 c) 210 c) 210 c) 210 c) 210 <td>0.03%0 15, 09.49%0 47, 10.3%0 55, 10.3%0 44, 10.3%0 44, 10.3%0 44, 10.3%0 14, 10.3%0 14, 10.3%0 15, 10.3%0 15, 10.3%0 15, 10.0%50 16, 10.0%50 16, 10</td> <td>1 7.04-49 -60 2.14-67 -68 1.16-66 -13-12 1.07-13 -127 1.06-114 -127 1.06-114 -14 3.84-12 -04 0.00167 -14 3.84-12 -04 0.00210 -14 3.84-12 -04 0.00210 -14 1.48-24 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -16 2.06-04 -17 8.48-75 -18 1.48-11 -14 3.492 -14 3.492 -17 8.475 -14 3.492 -14 3.492 -14 3.492 -14</td> <td>ABC project abcG15(2) 18Hr abcG15- HL5 2</td> <td>ABC project abcG22(1) 12Hr abcG22- HL5 1</td> <td>DDB</td>	0.03%0 15, 09.49%0 47, 10.3%0 55, 10.3%0 44, 10.3%0 44, 10.3%0 44, 10.3%0 14, 10.3%0 14, 10.3%0 15, 10.3%0 15, 10.3%0 15, 10.0%50 16, 10.0%50 16, 10	1 7.04-49 -60 2.14-67 -68 1.16-66 -13-12 1.07-13 -127 1.06-114 -127 1.06-114 -14 3.84-12 -04 0.00167 -14 3.84-12 -04 0.00210 -14 3.84-12 -04 0.00210 -14 1.48-24 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -14 1.48-12 -16 2.06-04 -17 8.48-75 -18 1.48-11 -14 3.492 -14 3.492 -17 8.475 -14 3.492 -14 3.492 -14 3.492 -14	ABC project abcG15(2) 18Hr abcG15- HL5 2	ABC project abcG22(1) 12Hr abcG22- HL5 1	DDB
See Bene None Coin	ant sorting	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V M	e e e e e e e e e e e e e e e e e e e	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity drag drag and activity drag and activity activi	stinity drides birane transpos. ances (no missing value variable. ributes (no missing value	101 (0.79) 1318 (10.3 212 (1.66) 133 (1.52) 855 (6.79) 3187 (25.0) 340 (2.67) 105 (0.82) 340 (2.67) 105 (0.82) 347 (2.60) 90 (0.715) 101 (0.79) 844 (6.78) 87 (0.685) 113 (0.685) 114 (0.79) 114	a) 101 b) 101 5%) 1319 a) 193 b) 193 a) 865 5%) 3192 a) 30 a) 105 a) 342 b) 90 b) 101 a) 864 b) 87 a) 118 b) 131 a) 1128 b) 000 a) 2020 b) 210	0.73%) 1.5(0.74%) 4.7(1.5%) 5.5% 1.3%) 4.66 6.23% 1.7(2.28%) 4.66 6.23% 1.7(2.28%) 1.7(2.28%) 1.7(2.24%) 9.9% 0.76% 1.60 1.66% 3.20 0.65% 3.9% 0.75% 1.5(0.65%) 3.9% 0.75% 3.1(1.56%) 3.2% 0.65% 3.3% 0.65% 3.3% 0.75% 1.5% 0.65% 3.3% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5%	-51 7,24-49 -50 2,21+07 -51 2,14-07 -52 1,14-52 -54 1,34-52 -54 1,34-52 -54 1,34-52 -54 3,34-12 -64 0,0057 -64 0,0057 -64 0,0057 -64 0,0057 -64 0,0057 -65 2,26-64 -65 2,26-64 -65 3,26-64 -65 3,26-6	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid AX4 18	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 pope	DDB
See Bene None Coin	ent sorting	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V M	e e e e e e e e e e e e e e e e e e e	cess onent onent o,ML,R6	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity ding ding dity tatas requisitor a div tity tity toty toty toty toty toty toty	ctivity drides birane transpor. birane transpor. (no missing value vanable. hobutes (no missing values on missing store Original Oric	101 (0.79) 1318 (10.3 212 (1.66) 133 (1.52) 865 (6.79) 3167 (25.0) 340 (2.67) 105 (0.82) 342 (2.69) 342 (2.69) 342 (2.69) 342 (2.69) 101 (0.79) 864 (6.78) 87 (0.68) 1118 (0.93) 1118 (0.93) 1118 (0.93) 1128 (8.86) 2017 (15.8) 2019 (1.72) values) p values) p	a) 101 b) 212 a) 1319 a) 212 a) 193 a) 865 5(3) 3192 a) 365 a) 340 b) 864 b) 340 a) 101 b) 864 b) 87 a) 111 a) 131 a) 118 b) 1128 b) 1128 b) 128	0.73% 4.77 (9.49%) 4.77 (1.33%) 5.54 (1.39%) 4.67 (1.39%) 4.67 (1.39%) 4.67 (1.39%) 4.67 (1.29%) 1.67 (1.22%) 9.98 (1.42%) 1.67 (1.42%) 3.98 (1.42%) 3.98 (1.44%) 3.98 (1.4	-51 7.84-49 -50 2.14-67 -60 1.14-66 -51 1.33-52 -54 1.33-52 -127 1.67-163 -64 0.0057 -64 0.0057 -64 0.00210 -64 0.00220 -64 0.00220 -64 0.00220 -65 5.86-04 -65 5.86-04 -65 5.86-04 -65 5.86-04 -61 1.0477 2.04 1.0477 3.05 7.07 3.05 7.07 3.06 7.07 3.07 3.01 -1.047 1.0477 3.01 1.0477 3.02 1.0471 3.04 1.0471 3.04 1.0471	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid AX4 18	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12	DDB
See Bene Noro Low High	ant sorting	Dictyon	Entity names Entity featur © DDB Use feature Reference All entities Category V Dictyi V Dictyi V GO V Dictyi V Dictyi V M	e e e e e e e e e e e e e e e e e e e	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	sactivity sporter activity ding dity tatase regulator as regulator as transmen dity Lininding class activity dity Lininding class activity dity distribution distribution distribution distribution distribution line as line as l	stbrity drides bbrane transport, bbrane transport, (no missing value variable, and the stars of the star of the stars of the stars wanable labels (if f	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 b) 101 c) 212 a) 212 a) 193 a) 865 a) 340 a) 342 b) 342	0.73%) 1.5(0.74%) 4.7(1.5%) 5.5% 1.3%) 4.66 6.23% 1.7(2.28%) 4.66 6.23% 1.7(2.28%) 1.7(2.28%) 1.7(2.24%) 9.9% 0.76% 1.60 1.66% 3.20 0.65% 3.9% 0.75% 1.5(0.65%) 3.9% 0.75% 3.1(1.56%) 3.2% 0.65% 3.3% 0.65% 3.3% 0.75% 1.5% 0.65% 3.3% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5% 0.75% 1.5%	-51 7,24-49 -50 2,21+07 -51 2,14-07 -52 1,14-52 -54 1,34-52 -54 1,34-52 -54 1,34-52 -54 3,34-12 -64 0,0057 -64 0,0057 -64 0,0057 -64 0,0057 -64 0,0057 -65 2,26-64 -65 2,26-64 -65 3,26-64 -65 3,26-6	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid AX4 18 none D378_M1_R6	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 pope	DDB d
Eene Nooe Color Low (High	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spectra activity dring tatas required to a tatas required	ctivity drides birane transport ances (no misang (no misang value variable store Original Oric variable labels (if p e continuous value	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 b) 101 c) 212 a) 212 a) 193 a) 865 a) 340 a) 342 b) 342	0.73%0 1.5 (9.49%) 4.7 (1.53%) 5.5-5 (1.35%) 4.6 (3.62%) 1.7 (2.2,5%) 1.7 (2.2,5%) 1.7 (2.2,5%) 1.7 (2.2,5%) 1.7 (2.2,5%) 1.6 (2.45%) 3.9 (0.75%) 1.6 (2.45%) 3.9 (0.75%) 1.5 (6.22%) 1.5 (6.22%) 1.5 (6.22%) 1.5 (6.22%) 1.5 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 3.3 (1.5%) 1.5 (1.5%) 3.3 (1.5%) 1.5 (1.5%) 3.3 (1.5%) 1.5 (1.5%) 3.3 (1.5%) 1.5 (1.5%) 3.3 (1.5%) 1.5 (1.5%) 1.	-51 7.0x-49 -69 2.1x-67 -69 1.1x-66 -64 1.1x-32 -127 1.6x+124 -127 1.6x+124 -127 1.6x+124 -127 1.6x+124 -14 3.8x+12 -64 0.00210 -14 3.8x+12 -64 0.00220 -124 1.4x+22 -124 1.4x+24 -124 1.4x+24 -124 1.4x+24 -124 1.4x+24 -124 1.4x+71 -124 1.4x+24 -124 1.4x+24 -124 1.4x+14	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid AX4 18 none D378_M1_R6 1.298	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000	d DDB_G0267
Eene Nooe Color Low (High	ant sorting	Dictyont Distance Map	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spectra activity dring tatas required to a tatas required	stbrity drides bbrane transport, bbrane transport, (no missing value variable, and the stars of the star of the stars of the stars wanable labels (if f	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 b) 101 c) 212 a) 212 a) 193 a) 865 a) 340 a) 342 b) 342	0.73% 0.45% 0.47\% 0.47\%	-51 7.4e-49 -52 2.1e-07 -53 1.e-06 -14 1.3e-32 -54 1.3e-32 -54 1.3e-32 -54 1.3e-32 -54 1.3e-32 -64 0.0057 -64 0.0057 -64 0.0057 -64 0.0057 -65 2.2e-64 -0.0057 -65 3.2e-64 -0.0076 -55 3.2e-64 -0.0076 -55 3.2e-64 -55 3.2e-	ABC project abcG15(2) 18Hr abcG15- HL5 2 yostelium discoid AX4 18 none D378_M1_R6 1.298 0.000	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000	d DDB_G0267 DDB_G0267
Bene None Color High Arron Altrib	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spectra activity dring tatas required to a tatas required	ctivity drides birane transport ances (no misang (no misang value variable store Original Oric variable labels (if p e continuous value	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 b) 101 c) 212 a) 212 a) 193 a) 865 a) 340 a) 342 b) 342	0.73% 0.44% 0.47\% 0.47\%	-51 7.84-49 -60 2.14-67 -61 2.14-67 -61 1.16-66 -12 1.82-12 -127 1.82-14 3.84-12 3.84-12 -64 0.0057 -64 0.00210 -64 0.00220 -64 0.00220 -65 2.82-64 -65 2.82-64 -65 2.82-64 -65 2.82-64 -65 3.82-75 -65 3.82-75 -61 3.84-75 -61 3.84-75 -61 3.84-75 -61 3.82-72 -61 3.82-72 -1.84-75 4.22-43 -1.84-75 -1.84-73 -0.000 1.84-73 -0.01 3.84-75 -0.0200 1.84-73 -0.0200 1.84-73 -0.0200 1.84-73 -0.0000 1.84-73 -0.0000 1.84-73	ABC project abcG15(2) 18Hr abcG15(2) 18Hr 2 yostelium discoid AX4 18 none D378_M1_66 1.298 0.000	ABC project abcG22(1) 12Hr abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000 2.752	d DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267
Eene Nooe Color Low (High	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spectra activity dring tatas required to a tatas required	ctivity drides birane transport. birane transport. grow mssing values (no mssing value) (no mssing val	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 b) 101 c) 212 a) 212 a) 193 a) 865 a) 340 a) 342 b) 342	0.73% 0.45% 0.47\% 0.47\%	-51 7.84-49 -60 2.14-67 -61 2.14-67 -61 1.16-66 -12 1.82-12 -127 1.82-14 3.84-12 3.84-12 -64 0.0057 -64 0.00210 -64 0.00220 -64 0.00220 -65 2.82-64 -65 2.82-64 -65 2.82-64 -65 2.82-64 -65 3.82-75 -65 3.82-75 -61 3.84-75 -61 3.84-75 -61 3.84-75 -61 3.82-72 -61 3.82-72 -1.84-75 4.22-43 -1.84-75 -1.84-73 -0.000 1.84-73 -0.01 3.84-75 -0.0200 1.84-73 -0.0200 1.84-73 -0.0200 1.84-73 -0.0000 1.84-73 -0.0000 1.84-73	ABC project abcG15(2) 18Hr abcG15(2) 18Hr 2 yostelium discoid AX4 18 none D378_M1_66 1.298 0.000	ABC project abcG22(1) 12Hr abcG22- HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000	d DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267
Bene None Color High Arron Altrib	ant sorting	Dictyont Distance Map	Entity names Entity featur Definition Entity featur Definition Definition Entity Sets Category Of Di O	e e e e e e e e e e e e e e e e e e e	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spectra activity dring tatas required to a tatas required	ctivity drides birane transport. birane transport. grow mssing values (no mssing value) (no mssing val	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 3) 101 3) 212 a) 212 a) 193 a) 805 a) 340 a) 340 a) 342 b) 342	0.73%0 (3.4%) (9.4%) 4.7 (1.5%) 4.5% (1.5%) 4.5% (1.5%) 4.5% (2.5%) 1.7% (2.2.5%) 1.7% (2.2.5%) 1.9% (2.4%) 4.5% (2.4%) 4.5% (2.4%) 4.5% (2.4%) 4.5% (2.4%) 4.5% (2.4%) 4.5% (1.4%) 4.5%	-51 7.0x-49 -69 2.1x-67 -69 2.1x-67 -69 1.1x-66 -14 3.4x-12 -127 1.6x+124 -127 1.6x+124 -127 1.6x+124 -14 3.8x+12 -64 0.0057 -14 3.8x+12 -64 0.00230 -14 1.4x+23 -65 2.6x-64 -65 2.6x-64 -143 3.4x-53 -64 0.4x+37 -84x-77 8.4x-75 -64 2.6x-64 -143 3.6x-62 -144 3.6x-62 -145 3.4x-64 -145 3.4x-64 -146 3.4x-75 -148 -146-62 -148 -146-62 -148 -146-62 -148 -146-62 -148 -146-62 -148 -146-62 -148 -146-62 <tr< td=""><td>ABC project abcG15(2) 18Hr AbcG15(2) 18Hr HL5 2 yostelium discoid AX4 18 D378_M1_R6 1.298 0.000 0.000</td><td>ABC project abcG22(1) 12H HL5 HL5 1 yostelium discoid AX4 12 D601_M1_R6 0.000 0.000 2.752 0.000</td><td>d DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267</td></tr<>	ABC project abcG15(2) 18Hr AbcG15(2) 18Hr HL5 2 yostelium discoid AX4 18 D378_M1_R6 1.298 0.000 0.000	ABC project abcG22(1) 12H HL5 HL5 1 yostelium discoid AX4 12 D601_M1_R6 0.000 0.000 2.752 0.000	d DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267
Bene Hone Color High Arron Altrib	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity associate activity ding titue trates regulates as the activity drives trates regulates as the activity trates regulates as the activity trates activity acti	stivity drides birane transport. ances (no missing (no missing value variable. stare Original Oric variable labels (if f ee contruous value set colors set colors	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 3) 101 3) 212 a) 212 a) 193 a) 805 a) 340 a) 340 a) 342 b) 342	0.73% 0.47\% 0.47\%	-51 7.8x+49 -51 7.8x+49 -60 1.1e*06 -53 1.3x+32 -127 1.8x+12 -127 1.8x+12 -127 1.8x+12 -127 1.8x+12 -127 1.8x+12 -14 3.8x+12 -14 3.8x+12 -14 1.4x+22 -14 0.00210 -14 1.4x+22 -14 0.00706 -55 3.8x+04 -14 1.4x+23 -14 3.4x+25 -16 3.4x+15 -16 3.4x+15 -16 3.4x+15 -16	ABC project abcG15(2) 18Hr AbcG15(2) 18Hr HL5 2 yostelium discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000	ABC project abcG22(1) 12Hr abcG22(1) 12Hr HL5 HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000 2.752 0.000	DD8_G0267 DD8_G0267 DD8_G0267 DD8_G0267 DD8_G0267 DD8_G0267 DD8_G0267
Bene Hone Color High Arron Altrib	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference S Al entities C effort C p C p C p C p C p C p C p C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(function molecular (function molecular (function molecular (function molecular (function pathiata) (function pathiata) (function molecular (function molecular) (function molecular (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular) (function molecular)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity spanter activity driver transmer transm	stivity drides birane transport. ances (no missing (no missing value variable. stare Original Oric variable labels (if f ee contruous value set colors set colors	101 (0.79) 1318 (10.3) 152 (1.66) 153 (1.52) 1565 (6.79) 1567 (5.5) 157 (1.52) 157 (1.52) 157 (1.52) 158 (1.52) 159	a) 101 3) 101 3) 212 a) 212 a) 193 a) 805 a) 340 a) 340 a) 342 b) 342	0.73% (3.4%) (9.4%) (9.4%) (9.4%) (1.3%)	-51 7.04-49 -52 2.14-57 -52 2.14-57 -127 1.06-113 -127 1.06-113 -127 1.06-113 -14 3.84-12 -04 0.00157 -14 3.84-12 -14 3.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -14 1.84-12 -16 2.00 -10 1.84-11 -10 1.84-11 -11 1.84-11 -12 1.84-11 -13 1.84-11 -14 1.84-12 -15 2.84-14 -16 2.84-14 -17 8.44-15 -18 1.84-11 -18 </td <td>ABC project abcG15(2) 18Hr abcG15(2) 18Hr tL5 2 yostElium discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000 0.000 0.000</td> <td>ABC project abcG22(1)12Hr abcG22(1)12Hr HLS HLS 12 none D601_M1_R6 0.000 2.752 0.000 0.000 0.000</td> <td>DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267</td>	ABC project abcG15(2) 18Hr abcG15(2) 18Hr tL5 2 yostElium discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000 0.000 0.000	ABC project abcG22(1)12Hr abcG22(1)12Hr HLS HLS 12 none D601_M1_R6 0.000 2.752 0.000 0.000 0.000	DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267
Bene Hone Color High Arron Altrib	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference T 00 C 0 C 0 C 0 C 0 C 0 C 0 C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(Juncio maletta) (Juncio maletta) (Juncio patella (Juncio patella) (Juncio patella)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity sporter activity ding dity tatase regulator as regulator as the regulator as regulator as the regulator as dity the regulator as dity discentrainment disc	stivity drides birane transpot. birane transpot. (no missing value vorable, and the state of the state of the state of the state of the state state of the state of the state variable labels (if a control of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state state of the state of the state of the state of the state state of the state of the state of the state of the state state of the state of the s	101 (0.7) 1316 (10.3) 1316 (10.3) 1316 (10.3) 1317 (12.5) 1317 (12	a) 101 3) 101 3) 212 a) 212 a) 193 a) 805 a) 340 a) 340 a) 342 b) 342	0.73% 0.47\% 0.47\%	-51 7.04-49 -68 1.14-06 -24 1.34-12 -127 1.64-13 -127 1.64-13 -127 1.64-13 -14 3.84-12 -04 0.0057 -14 3.84-12 -14 3.84-12 -14 3.84-12 -14 1.43-21 -14 1.43-12 -14 1.84-12 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 1.44-14 -14 <td>ABC project abcG15(2) 18Hr abcG15(2) 18Hr tL5 2 yostElium discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000 0.000 0.000</td> <td>ABC project abcG22(1) 12Hr abcG22(1) 12Hr HL5 HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000 2.752 0.000</td> <td></td>	ABC project abcG15(2) 18Hr abcG15(2) 18Hr tL5 2 yostElium discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000 0.000 0.000	ABC project abcG22(1) 12Hr abcG22(1) 12Hr HL5 HL5 1 yostelium discoid AX4 12 none D601_M1_R6 0.000 0.000 2.752 0.000	
Bene Hone Color High Arron Altrib	ant sorting	Dictyont	Entity names Entity featur Entity featur C 00 Use feature Reference Al entities Reference T 00 C 0 C 0 C 0 C 0 C 0 C 0 C	e set (nput) base henotypes lological.proc liular.compo D286 D346 D346 D346 D460	cess cess cess cess cess cess cess cess	GQ, molecula GQ, molecula	(Juncio maletta) (Juncio maletta) (Juncio patella (Juncio patella) (Juncio patella)	ar transducer de binding a schivity especific tran ucleotide bin sphatase acti de-triphosph a schivity act de-hydrolysis- msducer acti bonucleotide activity ric ester hydr antferes act sociale bindin frate derivati clic composu- mbrane trans- gulator acti- transferes act gulator acti- transferes act act-triphosph actide bindin seatide bindin	activity associate activity ding titue trates regulates as the activity drives trates regulates as the activity trates regulates as the activity trates activity acti	stivity drides birane transport. ances (no missing (no missing value variable. stare Original Oric variable labels (if f ee contruous value set colors set colors	101 (0.7) 1316 (10.3) 1316 (10.3) 1316 (10.3) 1317 (12.5) 1317 (12	a) 101 3) 101 3) 212 a) 212 a) 193 a) 805 a) 340 a) 340 a) 342 b) 342	0.73% (3.4%) (9.4%) (9.4%) (9.4%) (1.3%)	-51 7.04-49 -52 2.14-57 -54 1.34-32 -127 1.64-164 -127 1.64-164 -127 1.64-164 -144 3.84-12 -64 0.00167 -64 0.00210 -74 1.84-12 -64 0.00210 -74 1.43-21 -64 0.00210 -74 1.43-21 -64 0.00210 -74 1.43-21 -64 0.00210 -74 1.43-21 -64 0.00210 -75 5.84-04 -65 2.66-04 -77 8.47-55 -64 0.000 -77 8.47-55 -78 1.46-41 -78 1.46-41 -78 1.46-41 -78 1.46-41 -78 1.46-41 -78 1.46-41 -78 1.46-41 -78	ABC project abcG15(2) 18Hr abcG15(2) 18Hr bcG15(2) 18Hr btG15 2 yoteElum discoid AX4 18 none D378_M1_R6 1.298 0.000 0.000 0.000 0.000 0.000	ABC project abcG22(1)12Hr abcG22(1)12Hr HLS HLS 12 none D601_M1_R6 0.000 2.752 0.000 0.000 0.000	DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267 DDB_G0267

The **Data Table** widget above contains the output from the **PIPAx** widget. Each column contains gene expressions of a single experiment. The labels are shown in the table header. The **Distance Map** widget shows distances between experiments. The distances are measured with **Distance** widget, which was set to compute *Euclidean* distances.

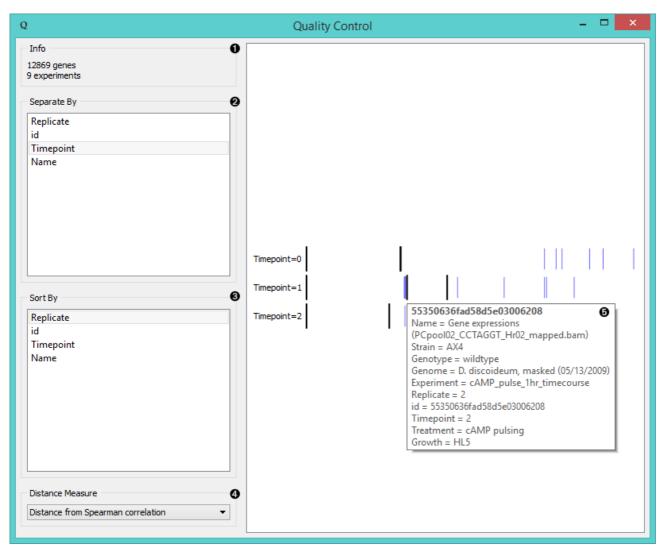
Quality Control

Computes and plots distances between experiments or replicates.

Signals

Inputs:

• Data


Data set.

Outputs:

• (None)

Description

Quality Control measures distances between experiments (usually replicates) for a selected label. The widget visualizes distances by selected label. Experiments that lie the farthest from the initial black line should be inspected for anomalies.

1. Information on the input.

- 2. Separate experiments by label.
- 3. Sort experiments by label.
- 4. Compute distances by:
 - Pearson correlation
 - Euclidean distances
 - Spearman correlation
- 5. Hover over the vertical line to display the information on a chosen instance. Click on the black line to change the reference to that instance.

Quality Control widget gives us feedback on the quality of our data and can be connected to any widget with data output. In the example above (see the image under *Description*) we fed 9 experiments of *Cyclic AMP pulsing* of *Dic*-tyostelium discoideum from **GenExpress** widget into **Quality Control** and separated them by timepoint label. We found replicate 2 from tp 2 among the tp 1 data, meaning we should inspect these data further.

Select Genes

Manual selection of gene subset.

Signals

Inputs:

• Data

Data set.

Gene Subset

A subset of genes to be used for gene selection (optional).

Outputs:

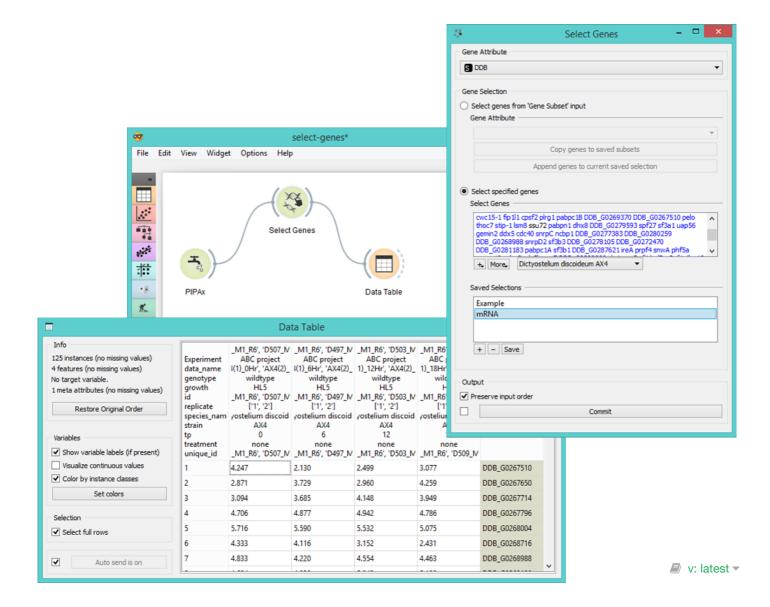
Selected Data

A subset of genes selected in the widget.

Description

Select Genes widget is used to manually create the gene subset. There are three ways to select genes:

- Manual gene selection (written input). The widget supports autocompletion for gene names.
- Selecting genes from gene sets in the "+" option.
- Selecting genes from a separate input (input can be adjusted in the widget).


ž.	Select Genes – 🗖 🗙
Gene Attri	bute O
S DDB	•
Gene Sele	tion .
	genes from 'Gene Subset' input
Gene A	
	v
	Copy genes to saved subsets
	Append genes to current saved selection
Colort	pecified genes
Select 9	
thoc7 gemin DDB_ DDB_	i-1 fip1l1 cpsf2 plrg1 pabpc1B DDB_G0269370 DDB_G0267510 pelo stip-1 lsm8 ssu72 pabpn1 dhx8 DDB_G0279593 spf27 sf3a1 uap56 2 ddx5 cdc40 snrpC ncbp1 DDB_G0277383 DDB_G0280259 50268988 snrpD2 sf3b3 DDB_G0278105 DDB_G0227470 50281183 pabpc1A sf3b1 DDB_G0287621 ireA prpf4 snwA phf5a tore, Dictyostelium discoideum AX4 ielections
Exam	
+ -	- Save
Output	0
Preserv	e input order
	Commit

- 1. Select *Gene Attribute* if there is more than one column with gene names.
- 2. Specify how you want to select your genes: *Select Genes from 'Gene Subset' input* adds genes from the separate input to selected genes. To create a new saved selection, click *Copy genes to saved subsets*. The genes will be listed in *Select Genes* text area below. To add these genes to an existing selection, click *Append genes to current saved selection*.
- 3. In *Select specified genes* you can type the gene name and the widget will automatically suggest corresponding genes. Genes that match the genes in the input will be colored blue, while the unmatched will remain black.
- 4. The "+" button has a drop-down menu with two options.
 - Import names from gene sets... gives a list of gene sets and copies genes from selected sets into the list.
 - *Import names from text files...* imports gene names from the file.
- 5. *More* has two settings: *Complete on gene symbol names* (for easier gene selection) and *Translate all names to official symbol names* (for uniformity).
- 6. Set the organism to select the genes from (organism from the input data is chosen as default).
- 7. *Saved Selections* saves the most frequently used genes. "+" adds a new selection, "-" removes the existing one, and *Save* saves the current list. Double-click the selection to rename it.
- 8. *Output* for this widget is a data subset. If you wish to preserve the order of instances from your input data, tick the *Preserve input order* box. If *Auto commit is on*, all changes will be communicated automatically. Alternatively press *Commit*.

Below is a screenshot of the Import Gene Set Names option.

Ş	Import Gene Set Names	?	×
Dictyostelium discoideum	AX4		•
mRNA			
Category	Name	#	^
GO molecular_funct	pre-mRNA binding	2	
GO biological_process	nuclear-transcribed mRNA catabolic process, deadenylation	3	
GO molecular_funct	mRNA 3'-UTR binding	3	
GO biological_process	mRNA cleavage	4	
GO biological_process	mRNA cis splicing, via spliceosome	4	
GO biological_process	7-methylguanosine mRNA capping	5	
GO biological_process	nuclear-transcribed mRNA catabolic process, nonsense-medi	5	
GO cellular_compo	mRNA cleavage and polyadenylation specificity factor complex	6	
GO biological_process	mRNA-containing ribonucleoprotein complex export from n	7	
GO biological_process	mRNA export from nucleus	7	
GO biological_process	mRNA polyadenylation	8	
GO cellular_compo	mRNA cleavage factor complex	8	
GO biological_process	mRNA 3'-end processing	9	
GO biological_process	nuclear-transcribed mRNA catabolic process	11	
GO molecular_funct	mRNA binding	11	
	mRNA catabolic process	15	
GO biological_process		15	
KEGG pathways	mRNA surveillance pathway	45	
2	mRNA splicing, via spliceosome	49	
GO biological_process	mRNA processing	112	
GO biological_process	mRNA metabolic process	123	
<		>	*
	OK	Cancel	

Below is a very simple workflow for this widget. We selected *AX4 Dictyostelium discoideum* data from different time points and two different replicates from **PIPAx** widget. In **Select Genes** we used the *Import names from gene sets...* option and selected two mRNA processes that gave us a list of genes you can see in the *Select Genes* box. Then we fed these data into the **Data Table**. There are 125 genes in the entire *AX4 Dictyostelium discoideum* data that are present in the selected mRNA processes.

Set Enrichment

Determines statistically significant differences in expression levels for biological processes.

Signals

Inputs:

• Data

Data set.

• Reference

Data with genes for the reference set (optional).

Outputs:

• Selected data

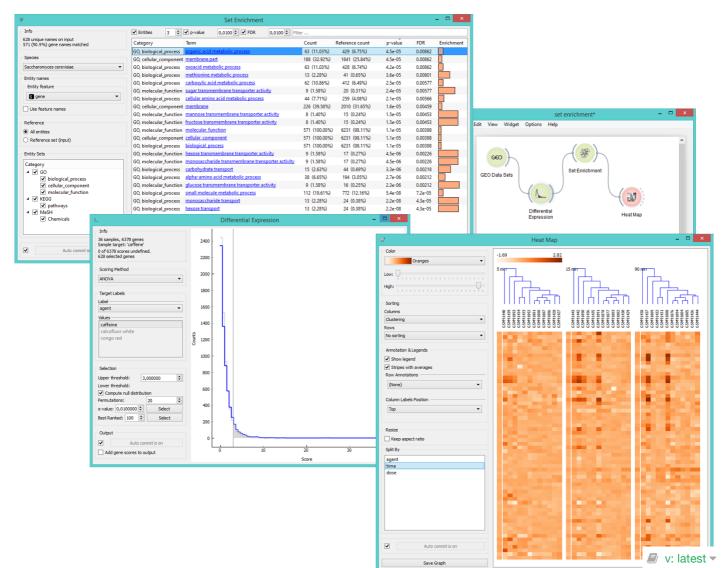
Data subset.

Description

The widget shows a ranked list of terms with <u>p-values</u>, <u>FDR</u> and <u>enrichment</u>. **Set Enrichment** is a great tool for finding biological processes that are over-represented in a particular gene or chemical set.

Sets from (GO, KEGG, miRNA and MeSH) come with the Orange installation.

t in the second s					Set Enrichment							×
Info	0	 Entities 	3 🔹	✓ p-value	0,0100 🜩 🗹 FDR	0,0100 🖨 Filt	lter 🕖)				
7099 unique names on input 158 (2.2%) gene names matched		Category		Term		Count	t R	Reference count	p-value	FDR	Enrichment	
		MeSH, Chemio	cals	Carboxylic A	<u>tids</u>	3 (1.9	.90%)	61 (0.14%)	0.00153	0.00769	1	
Species	0	MeSH, Chemic	cals	Inorganic Ch	emicals	5 (3.	.16%)	157 (0.37%)	3.1e-04	0.00212	Í	
Rattus norvegicus	-	MeSH, Chemic	cals	Acids, Acycli	<u> </u>	3 (1.9	.90%)	46 (0.11%)	6.7e-04	0.00388	ĺ.	
Entity names	0	GO, molecular	function	adenyl ribon	ucleotide binding	20 (1)	2.66%)	1391 (3.26%)	2.5e-07	4.6e-06	Ī	
	•	GO, molecular	function	hydrolase act	ivity, acting on glycosyl l	bonds 4 (2.	.53%)	110 (0.26%)	7.7e-04	0.00432	i	
Entity feature		GO, molecular	function	ammonium i	on binding	3 (1.9	.90%)	56 (0.13%)	0.00120	0.00621	i i	
S gene	•	GO, molecular	function	nucleotide bi	nding	29 (1	8.35%)	2188 (5.13%)	2.2e-09	6.1e-08	Ī	
Use feature names		GO, molecular	function	enzyme bind	ing	22 (1	3.92%)	1631 (3.82%)	1.8e-07	3.3e-06	i	
		GO, molecular	function	identical prot	ein binding	20 (1)	2.66%)	1166 (2.73%)	1.4e-08	3.6e-07	i	
leference	0	GO, molecular	function	isomerase ac	<u>tivity</u>	6 (3.	.80%)	112 (0.26%)	4.1e-06	5.4e-05	Ì	
All entities		GO, molecular	function	transcription	factor activity, direct liga	nd reg 3 (1.9	.90%)	42 (0.10%)	5.1e-04	0.00314	Î.	
) Reference set (input)		GO, molecular	function	protease bind	ling	5 (3.	.16%)	108 (0.25%)	5.4e-05	4.9e-04	Ĩ	
y reference set (input)		GO, molecular	function	binding		123 (7	77.85%)	10761 (25.22%)	1.1e-43	6.3e-41	Í	
Intity Sets	6	GO, molecular	function	enzyme regu	lator activity	10 (6.	.33%)	688 (1.61%)	2.6e-04	0.00186	i	
C-t	<u>^</u>	GO, molecular	function	receptor bind	ling	16 (10	0.13%)	1285 (3.01%)	2.5e-05	2.5e-04	i	
Category a GO		GO, molecular	function	protein com	olex binding	12 (7.	.59%)	938 (2.20%)	2.1e-04	0.00154	i	
✓ GO ✓ biological process		GO, molecular	function	RNA binding		16 (10	0.13%)	1456 (3.41%)	1.1e-04	8.9e-04	i	
✓ cellular component		GO, molecular	function	structure-spe	cific DNA binding	8 (5.	.06%)	256 (0.60%)	5.6e-06	7.1e-05	i	
✓ molecular_function		GO, molecular				11 (6.	.96%)	1051 (2.46%)	0.00194	0.00935	i	
▲ 🖌 KEGG		GO, molecular	function	hormone act	ivity	5 (3.	.16%)	121 (0.28%)	9.2e-05	7.8e-04	ì	
✓ pathways		GO, molecular	function	transcription	factor activity, sequence	-specifi 11 (6.	.96%)	762 (1.79%)	1.4e-04	0.00108	ľ	
 miRNA Targets 		GO, molecular	function	coenzyme bi	nding	7 (4.4	.43%)	196 (0.46%)	9.2e-06	1.1e-04	i	
✓ largets ✓ MeSH		GO, molecular	function	ribonucleosid	le binding	21 (1	3.29%)	1698 (3.98%)	1.4e-06	2.1e-05	i	
Chemicals	~	GO, molecular	function	peptidase rec	ulator activity	5 (3.	.16%)	194 (0.45%)	8.1e-04	0.00450	1	
		GO, molecular	-			142 (8	89.87%)	15509 (36.35%)	6.9e-45	4.8e-42		
Auto commit is on	6	GO, molecular					2.15%)	2455 (5.75%)	4.4e-12	1.8e-10	Ĭ	
 Auto commit is on 	0	GO. molecular				8 (5)	.06%)	500 (1.17%)	5.9e-04	0.00346	i	


- 1. Information on the input data set and the ratio of genes that were found in the databases.
- 2. Select the species.
- 3. Entity names define the features in the input data that you wish to use for term analysis. Tick Use feature names

if your genes or chemicals are used as attribute names rather than as meta attributes.

- 4. Select the reference data. You can either have entities (usually genes from the organism *All Entities*) as a reference or a reference set from the input.
- 5. Select which *Entity sets* you wish to have displayed in the list.
- 6. When Auto commit is on, the widget will automatically apply the changes. Alternatively press Commit.
- 7. Filter the list by:
 - the minimum number of **entities** included in each term
 - the minimum threshold for **p-value**
 - the maximum threshold for **false discovery rate**
 - a search word

Example

In the example below we have decided to analyse gene expression levels from *Caffeine effect: time course and dose response* data set. We used the ANOVA scoring in the **Differential Expression** widget to select the most interesting genes. Then we fed those 628 genes to **Set Enrichment** for additional analysis of the most valuable terms. We sorted the data by FDR values and selected the top-scoring term. **Heat Map** widget provides a nice visualization of the data.

Volcano Plot

Plots significance versus fold-change for gene expression rates.

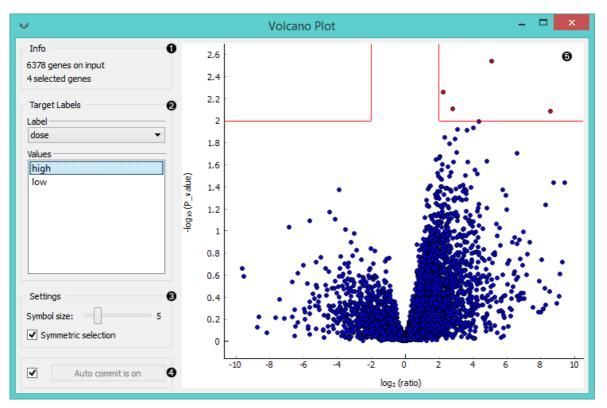
Signals

Inputs:

• Data

Input data set.

Outputs:

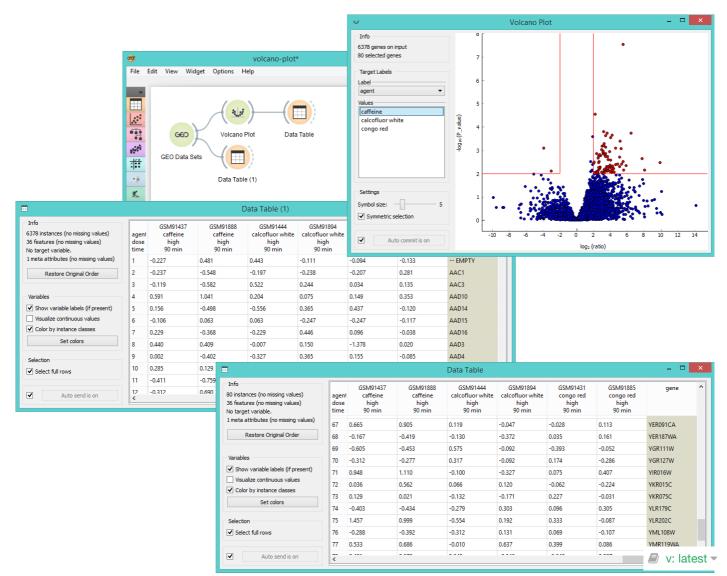

Selected data

Data subset.

Description

Volcano plot is a graphical method for visualizing changes in replicate data. The widget plots a binary logarithm of fold-change on the x-axis versus statistical significance (negative base 10 logarithm of p-value) on the y-axis.

Volcano Plot is useful for a quick visual identification of statistically significant data (genes). Genes that are highly dysregulated are farther to the left and right, while highly significant fold changes appear higher on the plot. A combination of the two are those genes that are statistically significant - the widget selects the top-ranking genes within the top right and left fields by default.


- 1. Information on the input and output data.
- 2. Select *Target Labels*. Labels depend on the attributes in the input. In *Values* you can change the sample target (default value is the first value on the list, alphabetically or numerically).
- 3. Change the Settings: adjust the symbol size and turn off symmetrical selection of the output data (the widget se-

lects statistically significant instances by default).

- 4. If Auto commit is on the widget will automatically apply the changes. Alternatively click Commit.
- 5. Visualization of the changes in gene expression. The red lines represent the area with the most statistically significant instances. Symmetrical selection is chosen by default, but you can also manually adjust the area you want in the output.

Example

Below you can see a simple workflow for **Volcano Plot**. We use *Caffeine effect: time course and dose response* data from **GEO Data Sets** widget and visualize them in a **Data Table**. We have 6378 gene in the input, so it is essential to prune the data and analyse only those genes that are statistically significant. **Volcano Plot** helps us do exactly that. Once the desired area is selected in the plot, we output the data and observe them in another **Data Table**. Now we get only 80 instances, which were those genes that had a high normalized fold change under high dose of caffeine and had a low p-value at the same time.

Associate

Association Rules

Induction of association rules.

Signals

Inputs

• Data

Data set

Outputs

Matching Data

Data instances matching the criteria.

Description

This widget implements FP-growth [1] frequent pattern mining algorithm with bucketing optimization [2] for conditional databases of few items. For inducing classification rules, it generates rules for the entire itemset and skips the rules where the consequent does not match one of the class' values.

•							Association Rules	-	
Info 🛛	Supp	Conf	Covr	Strg	Lift	Levr	Antecedent	Consequent	
Number of rules: 10000	0.01			31.41		0.00	tropical fruit, yogurt, root vegetables →	whole milk	
filtered rules: 2329	0.00	0.70		125.65		0.00	yogurt, other vegetables, bottled water, root vegetables →	whole milk	
elected rules: 1	0.00	0.75		209.42		0.00	vogurt, rolls/buns, bottled water, root vegetables →	whole milk	
Selected examples: 56	0.00	0.75		314.12		0.00	yogurt, other vegetables, rolls/buns, bottled water, root vegetables →	whole milk	
	0.00	0.70		251.30		0.00	tropical fruit, yogurt, other vegetables, rolls/buns, bottled water →	whole milk	
Find association rules	0.00	0.71			2.80	0.00	tropical fruit, yogurt, other vegetables, root vegetables →	whole milk	
finimal support: 0.05%	0.00	0.81	0.00		3.19	0.00	tropical fruit, yogurt, rolls/buns, root vegetables →	whole milk	
	0.00	0.72		139.61		0.00	tropical fruit, yogurt, other vegetables, rolls/buns, root vegetables →	whole milk	
/inimal confidence: 70%	0.00	0.79	0.00	179.50	3.08	0.00	tropical fruit, vogurt, other vegetables, bottled water, root vegetables →	whole milk	
lax. number of rules: 10000	0.00	0.92		209.42		0.00	tropical fruit, rolls/buns, bottled water, root vegetables →	whole milk	
Induce classification (itemset \rightarrow class) rules	0.00	1.00	0.00	314.12	3.91	0.00	tropical fruit, yogurt, rolls/buns, bottled water, root vegetables →	whole milk	
	0.00	0.83	0.00	418.83	3.26	0.00	tropical fruit, other vegetables, rolls/buns, bottled water, root vegetables →	whole milk	
 Auto find rules is on 	0.00	1.00	0.00	502.60	3.91	0.00	tropical fruit, yogurt, other vegetables, rolls/buns, bottled water, root vegetables →	whole milk	
Auto find rules is on	0.00	0.83	0.00	91.83	14.87	0.00	tropical fruit, other vegetables, rolls/buns, bottled water, root vegetables →	yogurt, whole milk	
	0.00	0.75	0.00	314.12	2.94	0.00	yogurt, rolls/buns, root vegetables, shopping bags →	whole milk	
Filter rules	0.00	0.71	0.00	179.50	2.80	0.00	other vegetables, soda, root vegetables, shopping bags →	whole milk	
Antecedent	0.00	0.75	0.00	314.12	2.94	0.00	tropical fruit, yogurt, other vegetables, rolls/buns, sausage →	whole milk	
	0.00	0.77	0.00	71.80	3.02	0.00	tropical fruit, root vegetables, sausage →	whole milk	
Contains: root vegetables	0.00	0.94	0.00	157.06	3.67	0.00	tropical fruit, yogurt, root vegetables, sausage →	whole milk	
Min. items: 1 🜩 Max. items: 999 🜩	0.00	0.71	0.00	147.82	2.76	0.00	tropical fruit, other vegetables, root vegetables, sausage →	whole milk	
	0.00	0.86	0.00	359.00	3.35	0.00	tropical fruit, yogurt, other vegetables, root vegetables, sausage →	whole milk	
Consequent	0.00	1.00	0.00	251.30	3.91	0.00	tropical fruit, rolls/buns, root vegetables, sausage →	whole milk	
	0.00	1.00	0.00	359.00	3.91	0.00	tropical fruit, yogurt, rolls/buns, root vegetables, sausage →	whole milk	
Contains: whole milk	0.00	0.70	0.00	55.10	12.49	0.00	tropical fruit, rolls/buns, root vegetables, sausage →	yogurt, whole milk	
Min. items: 1 🖨 Max. items: 999 🖨	0.00	0.73	0.00	167.53	2.87	0.00	yogurt, other vegetables, soda, pastry →	whole milk	
Apply these filters in search	0.00	0.91	0.00	228.45	3.56	0.00	tropical fruit, yogurt, pastry, root vegetables →	whole milk	
Appry these inters in sedicit	0.00	0.73	0.00	114.23	2.85	0.00	yogurt, other vegetables, pastry, root vegetables →	whole milk	
	0.00	0.83	0.00	418.83	3.26	0.00	tropical fruit, yogurt, other vegetables, pastry, root vegetables →	whole milk	
	0.00	0.75	0.00	209.42	2.94	0.00	yogurt, rolls/buns, pastry, root vegetables →	whole milk	
 Auto send selection is on 	0,00	1.00	0.00	/10 00	2 01	0.00	tranical fruit vacuet calle/hune pastry contiverstables	whole mills	>

- 1. Information on the data set.
- 2. In *Find association rules* you can set criteria for rule induction:
 - **Minimal support**: percentage of the entire data set covered by the entire rule (antecedent and consequent).
 - **Minimal confidence**: proportion of the number of examples which fit the right side (consequent) among those that fit the left side (antecedent).
 - **Max. number of rules**: limit the number of rules the algorithm generates. Too many rules can slow down the widget considerably.

If *Induce classification (itemset* \rightarrow *class) rules* is ticked, the widget will only generate rules that have a class value on the right-hand side (consequent) of the rule.

If *Auto find rules is on*, the widget will run the search at every change of parameters. Might be slow for data sets with many attributes, so pressing *Find rules* only when the parameters are set is a good idea.

- 3. Filter rules by:
 - Antecedent:
 - Contains: will filter rules by matching space-separated regular expressions in antecedent items.
 - *Min. items*: minimum number of items that have to appear in an antecedent.
 - Max. items: maximum number of items that can appear in an antecedent.

• Consequent:

- *Contains*: will filter rules by matching space-separated regular expressions in consequent items.
- *Min. items*: minimum number of items that have to appear in a consequent.
- *Max. items*: maximum number of items that can appear in a consequent.

If *Apply these filters in search* is ticked, the widget will limit the rule generation only to rules that match the filters. If unchecked, all rules are generated, but only the matching are shown.

4. If *Auto send selection is on*, data instances that match the selected association rules are output automatically. Alternatively press *Send selection*.

Example

Association Rules can be used directly with the File widget.

		association rules*	- • ×	
Edit Vie	w Widget Options Help			
	Data Tal	le		
		S		
	File			
		1		
	Association	Rules		
			Association Rules	
	Info	Supp Conf Covr Strg Lift Lev	r Antecedent	Consequent
	Number of rules: 10000	0.01 0.70 0.01 31.41 2.74 0.00		whole milk
	Filtered rules: 10000	0.00 0.70 0.00 125.65 2.74 0.00	a opical hait, jogart, root regetaties	whole milk
	Selected rules: 1	0.00 0.75 0.00 209.42 2.94 0.00	, , , , , , , , , , , , , , , , , , , ,	whole milk
	Selected examples: 56	0.00 0.75 0.00 314.12 2.94 0.00	, , ,	whole milk
		0.00 0.77 0.00 146.38 3.98 0.00		other vegetables
	Find association rules	0.00 0.70 0.00 103.20 6.67 0.00		tropical fruit
	Minimal support: 0.05%	0.00 0.88 0.00 171.50 6.27 0.00		yogurt
		0.00 0.70 0.00 251.30 2.74 0.00		whole milk
	Minimal confidence: 70%	0.00 0.70 0.00 190.30 3.62 0.00		other vegetables
	Max. number of rules: 10000	0.00 0.77 0.00 105.54 5.51 0.00		yogurt
	☐ Induce classification (itemset → class) rules	0.00 0.83 0.00 228.67 5.97 0.00		yogurt
	Induce classification (itemset → class) rules	0.00 0.71 0.00 51.29 2.80 0.00	tropical fruit, yogurt, other vegetables, root vegetables -	whole milk
	 Auto find rules is on 	0.00 0.81 0.00 93.07 3.19 0.00	tropical fruit, yogurt, rolls/buns, root vegetables →	whole milk
		0.00 0.72 0.00 139.61 2.83 0.00	tropical fruit, yogurt, other vegetables, rolls/buns, root vegetables -	whole milk
		0.00 0.70 0.00 51.60 6.67 0.00	yogurt, other vegetables, bottled water, root vegetables →	tropical fruit
	Filter rules	0.00 0.79 0.00 73.71 7.49 0.00		tropical fruit
	Antecedent	0.00 0.79 0.00 179.50 3.08 0.00		whole milk
	Contains:	0.00 0.73 0.00 126.87 3.79 0.00		other vegetables
		0.00 0.92 0.00 209.42 3.59 0.00		whole milk
	Min. items: 1 🗢 Max. items: 999 🗢	0.00 0.89 0.00 114.67 8.47 0.00	/ / / / / / / / / / / / / / / / / / / /	tropical fruit
		0.00 0.73 0.00 124.73 5.21 0.00		yogurt
	Consequent	0.00 1.00 0.00 314.12 3.91 0.00		whole milk
	Contains:	0.00 0.83 0.00 228.67 5.97 0.00		yogurt
		0.00 0.83 0.00 418.83 3.26 0.00		whole milk
	Min. items: 1 🗘 Max. items: 999 🗘	0.00 0.83 0.00 172.00 7.94 0.00 0.00 1.00 0.00 274.40 7.17 0.00		tropical fruit
	 Apply these filters in search 	0.00 1.00 0.00 274.40 7.17 0.00 0.00 1.00 0.00 502.60 3.91 0.00		yogurt whole milk
	· · · · · · · · · · · · · · · · · · ·	0.00 1.00 0.00 502.60 3.91 0.00		yogurt, whole milk
			· · · · · · · · · · · · · · · · · · ·	
	Auto send selection is on	0.00 0.71 0.00 153.14 6.55 0.00 0.00 0.75 0.00 158.58 3.88 0.00		root vegetables other vegetables

References and further reading

[1]: J. Han, J. Pei, Y. Yin, R. Mao. (2004) Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.

[2]: R. Agrawal, C. Aggarwal, V. Prasad. (2000) Depth first generation of long patterns.

On how to use regular expressions.

🖉 v: latest 🕶

Frequent Itemsets

Finds frequent itemsets in the data.

Signals

Inputs

• Data

Data set

Outputs

• Matching Data

Data instances matching the criteria.

Description

The widget finds frequent items in a data set based on a measure of support for the rule.

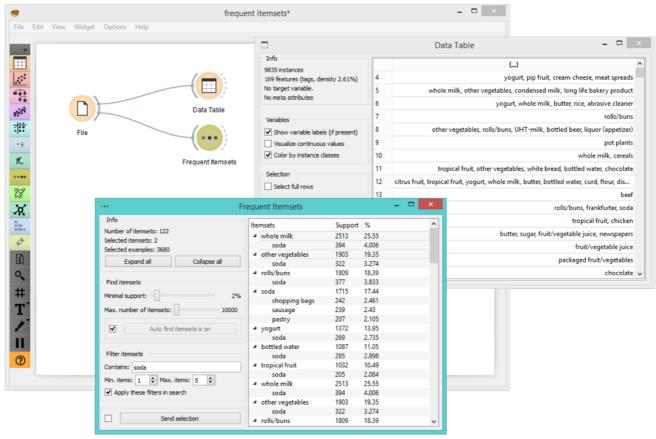
••• Fro	equent Itemsets			×
Info 0	Itemsets	Support	%	^
Number of itemsets: 122	▲ whole milk	2513	25.55	
Selected itemsets: 1	 other vegetables 	736	7.483	
Selected examples: 2513	root vegetables	228	2.318	
Expand all Collapse all	rolls/buns	557	5.663	
	soda	394	4.006	
Find itemsets 2	bottled water	338	3.437	
Minimal support: 2%	root vegetables	481	4.891	
Minimal support: 2%	shopping bags	241	2.45	
Max. number of itemsets: 10000	sausage	294	2.989	
	pastry	327	3.325	
 Auto find itemsets is on 	bottled beer	201	2.044	
	newspapers	269	2.735	
	pip fruit	296	3.01	
Filter itemsets	fruit/vegetable juice	262	2.664	
Contains:	whipped/sour cream	317	3.223	
	brown bread	248	2.522	
Min. items: 1 🖨 Max. items: 999 🖨	domestic eggs	295	2.999	
 Apply these filters in search 	frankfurter	202	2.054	
	pork	218	2.217	
	butter	271	2.755	
Auto send selection is on	curd	257	2.613	¥

- 1. Information on the data set. 'Expand all' expands the frequent itemsets tree, while 'Collapse all' collapses it.
- 2. In *Find itemsets by* you can set criteria for itemset search:
 - **Minimal support**: a minimal ratio of data instances that must support (contain) the itemset for it to be generated. For large data sets it is normal to set a lower minimal support (e.g. between 2%-0.01%).
 - **Max. number of itemsets**: limits the upward quantity of generated itemsets. Itemsets are generated in no particular order.

If *Auto find itemsets is on*, the widget will run the search at every change of parameters. Might be slow for large data sets, so pressing *Find itemsets* only when the parameters are set is a good idea.

3. *Filter itemsets*:

If you're looking for a specific item or itemsets, filter the results by regular expressions. Separate regular expressions by comma to filter by more than one word.


- **Contains**: will filter itemsets by regular expressions.
- **Min. items**: minimum number of items that have to appear in an itemset. If 1, all the itemsets will be displayed. Increasing it to, say, 4, will only display itemsets with four or more items.
- **Max. items**: maximum number of items that are to appear in an itemset. If you wish to find, say, only itemsets with less than 5 items in it, you'd set this parameter to 5.

If *Apply these filters in search* is ticked, the widget will filter the results in real time. Preferably not ticked for large data sets.

4. If *Auto send selection is on*, changes are communicated automatically. Alternatively press *Send selection*.

Example

Frequent Itemsets can be used directly with the File widget.

Ø v: latest ▼