
Crescenzio Gallo
Orange Widgets

Color

Set color legend for variables.

Signals
Inputs:

Data

An input data set.

Outputs:

Data

A data set with a new color legend.

Description
The Color widget enables you to set the color legend in your visualizations according to your own preferences. This
option provides you with the tools for emphasizing your results and offers a great variety of color options for presen-
ting your data. It can be combined with most visualizations widgets.

1. A list of discrete variables. You can set the color of each variable by double-clicking on it and opening the Color
palette or the Select color window. The widget also enables text-editing. By clicking on a variable, you can change
its name.

2. A list of continuous variables. You can customize the color gradients by double-clicking on them. The widget also
enables text-editing. By clicking on a variable, you can change its name. If you hover over the right side side of
the gradient, Copy to all appears. You can then apply your customized color gradient to all variables.

3. Produce a report.
4. Apply changes. If Apply automatically is ticked, changes will be communicated automatically. Alternatively, just

click Apply.

Discrete variables

1. Choose a desired color from the palette of basic colors.
2. Move the cursor to choose a custom color from the color palette.
3. Choose a custom color from your previously saved color choices.
4. Specify the custom color by:

entering the red, green, and blue components of the color as values between 0 (darkest) and 255 (brightest)
entering the hue, saturation and luminescence components of the color as values in the range 0 to 255

5. Add the created color to your custom colors.
6. Click OK to save your choices or Cancel to exit the the color palette.

Numeric variables

1. Choose a gradient from your saved profiles. The default profile is already set.
2. The gradient palette
3. Select the left side of the gradient. Double clicking the color opens the Select Color window.
4. Select the right side of the gradient. Double clicking the color opens the Select Color window.
5. Pass through black.

6. Click OK to save your choices or Cancel to exit the color palette.

Example
We chose to work with the Iris data set. We opened the color palette and selected three new colors for the three types
of Irises. Then we opened the Scatter Plot widget and viewed the changes made to the scatter plot.

For our second example, we wished to demonstrate the use of the Color widget with continuous variables. We put
different types of Irises on the x axis and petal length on the y axis. We created a new color gradient and named it
greed (green + red). In order to show that sepal length is not a deciding factor in differentiating between different ty-
pes of Irises, we chose to color the points according to sepal width.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Concatenate

Concatenates data from multiple sources.

Signals
Inputs:

Primary Data

A data set that defines the attribute set.

Additional Data

An additional data set.

Outputs:

Data

Description
The widget concatenates multiple sets of instances (data sets). The merge is “vertical”, in a sense that two sets of 10
and 5 instances yield a new set of 15 instances.

1. Set the attribute merging method.
2. Add the identification of source data sets to the output data set.
3. Produce a report.
4. If Apply automatically is ticked, changes are communicated automatically. Otherwise, click Apply.

If one of the tables is connected to the widget as the primary table, the resulting table will contain its own attributes.
If there is no primary table, the attributes can be either a union of all attributes that appear in the tables specified as
Additional Tables, or their intersection, that is, a list of attributes common to all the connected tables.

Example
As shown below, the widget can be used for merging data from two separate files. Let’s say we have two data sets with

the same attributes, one containing instances from the first experiment and the other instances from the second ex-
periment and we wish to join the two data tables together. We use the Concatenate widget to merge the data sets by
attributes (appending new rows under existing attributes).

Below, we used a modified Zoo data set. In the first File widget, we loaded only the animals beginning with the let-
ters A and B and in the second one only the animals beginning with the letter C. Upon concatenation, we observe the
new data in the Data Table widget, where we see the complete table with animals from A to C.

https://docs.orange.biolab.si/3/visual-programming/_downloads/zoo-first.tab
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/_downloads/zoo-second.tab
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Continuize

Turns discrete attributes into continuous dummy variables.

Signals
Inputs:

Data

Input data set

Outputs:

Data

Output data set

Description
The Continuize widget receives a data set in the input and outputs the same data set in which the discrete attributes
(including binary attributes) are replaced with continuous ones.

1. Continuization methods, which define the treatment of multivalued discrete attributes. Say that we have a discre-
te attribute status with the values low, middle and high, listed in that order. Options for their transformation are:

Target or First value as base: the attribute will be transformed into two continuous attributes, sta-

https://en.wikipedia.org/wiki/Continuity_correction

tus=middle with values 0 or 1 signifying whether the original attribute had value middle on a particular
example, and similarly, status=high. Hence, a three-valued attribute is transformed into two continuous at-
tributes, corresponding to all except the first value of the attribute.
Most frequent value as base: similar to the above, except that the data is analyzed and the most frequent
value is used as a base. So, if most examples have the value middle, the two newly constructed continuous at-
tributes will be status=low and status=high.
One attribute per value: this would construct three continuous attributes out of a three-valued discrete
one.
Ignore multinominal attributes: removes the multinominal attributes from the data.
Treat as ordinal: converts the attribute into a continuous attribute with values 0, 1, and 2.
Divide by number of values: same as above, except that the values are normalized into range 0-1. So, our
case would give values 0, 0.5 and 1.

2. Define the treatment of continuous attributes. You will usually prefer the Leave them as they are option. The al-
ternative is Normalize by span, which will subtract the lowest value found in the data and divide by the span, so
all values will fit into [0, 1]. Finally, Normalize by standard deviation subtracts the average and divides by the
deviation.

3. Define the treatment of class attributes. Besides leaving it as it is, there are also a couple of options available for
multinominal attributes, except for those options which split the attribute into more than one attribute - this ob-
viously cannot be supported since you cannot have more than one class attribute.

4. With value range, you can define the values of new attributes. In the above text, we supposed the range from 0 to
1. You can change it to from -1 to 1.

5. Produce a report.
6. If Apply automatically is ticked, changes are committed automatically. Otherwise, you have to press Apply after

each change.

Examples
First, let’s see what is the output of the Continuize widget. We feed the original data (the Heart disease data set)
into the Data Table and see how they look like. Then we continuize the discrete values and observe them in another
Data Table.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

In the second example, we show a typical use of this widget - in order to properly plot the linear projection of the
data, discrete attributes need to be converted to continuous ones and that is why we put the data through the Conti-
nuize widget before drawing it. The attribute “chest pain” originally had four values and was transformed into three
continuous attributes; similar happened to gender, which was transformed into a single attribute “gender=female”.

Create Class

Create class attribute from a string attribute.

Signals
Inputs:

Data

Attribute-valued data set.

Outputs:

Data

Attribute-valued data set.

Description
Create Class creates a new class attribute from an existing discrete or string attribute. The widget matches the
string value of the selected attribute and constructs a new user-defined value for matching instances.

1. The attribute the new class is constructed from.
2. Matching: - Name: the name of the new class value - Substring: regex-defined substring that will match the va-

lues from the above-defined attribute - Instances: the number of instances matching the substring - Press ‘+’ to
add a new class value

3. Name of the new class column.
4. Match only at the beginning will begin matching from the beginning of the string. Case sensitive will match by

case, too.
5. Produce a report.
6. Press Apply to commit the results.

Example
Here is a simple example with the auto-mpg data set. Pass the data to Create Class. Select car_name as a column
to create the new class from. Here, we wish to create new values that match the car brand. First, we type ford as the
new value for the matching strings. Then we define the substring that will match the data instances. This means that
all instances containing ford in their car_name, will now have a value ford in the new class column. Next, we define
the same for honda and fiat. The widget will tell us how many instance are yet unmatched (remaining instances). We
will name them other, but you can continue creating new values by adding a condition with ‘+’.

We named our new class column car_brand and we matched at the beginning of the string.

Finally, we can observe the new column in a Data Table or use the value as color in the Scatterplot.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Data Info

Displays information on a selected data set.

Signals
Inputs:

Data

A data set.

Selected Data

A data subset.

Outputs:

(None)

Description
A simple widget that presents information on data set size, features, targets, meta attributes, and location.

1. Information on data set size
2. Information on discrete and continuous features
3. Information on targets
4. Information on meta attributes
5. Information on where the data is stored
6. Produce a report.

Example
Below, we compare the basic statistics of two Data Info widgets - one with information on the entire data set and the
other with information on the (manually) selected subset from the Scatterplot widget. We used the Iris data set.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Data Sampler

Selects a subset of data instances from an input data set.

Signals
Inputs:

Data

Input data set to be sampled.

Outputs:

Data Sample

A set of sampled data instances.

Remaining Data

All other data instances from the input data set, which are not included in the sample.

Description
The Data Sampler widget implements several means of sampling data from an input channel. It outputs a sampled
and a complementary data set (with instances from the input set that are not included in the sampled data set). The
output is processed after the input data set is provided and Sample Data is pressed.

1. Information on the input and output data set
2. The desired sampling method:

Fixed proportion of data returns a selected percentage of the entire data (e.g. 70% of all the data)
Fixed sample size returns a selected number of data instances with a chance to set Sample with replace-
ment, which always samples from the entire data set (does not subtract instances already in the subset)
Cross Validation partitions data instances into complementary subsets, where you can select the number of
folds (subsets) and which fold you want to use as a sample.

3. Replicable sampling maintains sampling patterns that can be carried across users, while stratification mimics
the composition of the input data set.

4. Produce a report.
5. Press Sample data to output the data sample.

Examples
First, let’s see how the Data Sampler works. Let’s look at the information on the original data set in the Data Info
widget. We see there are 24 instances in the data (we used lenses.tab). We sampled the data with the Data Sampler
widget and we chose to go with a fixed sample size of 5 instances for simplicity. We can observe the sampled data in
the Data Table widget. The second Data Table shows the remaining 19 instances that weren’t in the sample.

In the workflow below, we have sampled 10 data instances from the Iris data set and sent the original data and the
sample to Scatter Plot widget for exploratory data analysis. The sampled data instances are plotted with filled circles,
while the original data set is represented with empty circles.

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datainfo.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Data Sets

Load a data set from an online repository.

Signals
Inputs:

(None)

Outputs:

Data

Attribute-valued data set.

Description
Datasets widget retrives selected data set from the server and sends it to the output. File is downloaded to the local
memory and thus instantly available even without the internet connection. Each data set is provided with a descrip-
tion and information on the data size, number of instances, number of variables, target and tags.

1. Information on the number of data sets available and the number of them downloaded to the local memory.
2. Content of available data sets. Each data set is described with the size, number of instances and variables, type of

the target variable and tags.
3. Formal description of the selected data set.
4. If Send Data Automatically is ticked, selected data set is communicated automatically. Alternatively, press Send

Data.

Example
Orange workflows can start with Data Sets widget instead of File widget. In the example below, the widget retrieves
a data set from an online repository (Kickstarter data), which is subsequently sent to both the Data Table and the Di-
stributions.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/distributions.html

Data Table

Displays attribute-value data in a spreadsheet.

Signals
Inputs:

Data

Attribute-valued data set.

Outputs:

Selected Data

Selected data instances.

Description
The Data Table widget receives one or more data sets in its input and presents them as a spreadsheet. Data instan-
ces may be sorted by attribute values. The widget also supports manual selection of data instances.

1. The name of the data set (usually the input data file). Data instances are in rows and their attribute values in co-
lumns. In this example, the data set is sorted by the attribute “sepal length”.

2. Info on current data set size and number and types of attributes
3. Values of continuous attributes can be visualized with bars; colors can be attributed to different classes.
4. Data instances (rows) can be selected and sent to the widget’s output channel.

5. Use the Restore Original Order button to reorder data instances after attribute-based sorting.
6. Produce a report.
7. While auto-send is on, all changes will be automatically communicated to other widgets. Otherwise, press Send

Selected Rows.

Example
We used two File widgets to read the Iris and Glass data set (provided in Orange distribution), and send them to the
Data Table widget.

Selected data instances in the first Data Table are passed to the second Data Table. Notice that we can select whi-
ch data set to view (iris or glass). Changing from one data set to another alters the communicated selection of data
instances if Commit on any change is selected.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

Discretize

Discretizes continuous attributes from an input data set.

Signals
Inputs:

Data

Attribute-valued data set.

Outputs:

Data

A data set with discretized values.

Description
The Discretize widget discretizes continuous attributes with a selected method.

1. The basic version of the widget is rather simple. It allows choosing between three different discretizations.

Entropy-MDL, invented by Fayyad and Irani is a top-down discretization, which recursively splits the attri-
bute at a cut maximizing information gain, until the gain is lower than the minimal description length of the
cut. This discretization can result in an arbitrary number of intervals, including a single interval, in which
case the attribute is discarded as useless (removed).
Equal-frequency splits the attribute into a given number of intervals, so that they each contain approximately
the same number of instances.
Equal-width evenly splits the range between the smallest and the largest observed value. The Number of in-
tervals can be set manually.
The widget can also be set to leave the attributes continuous or to remove them.

https://en.wikipedia.org/wiki/Discretization
http://ijcai.org/Past%20Proceedings/IJCAI-93-VOL2/PDF/022.pdf
http://www.saedsayad.com/unsupervised_binning.htm
https://en.wikipedia.org/wiki/Data_binning

2. To treat attributes individually, go to Individual Attribute Settings. They show a specific discretization of
each attribute and allow changes. First, the top left list shows the cut-off points for each attribute. In the snap-
shot, we used the entropy-MDL discretization, which determines the optimal number of intervals automatically;
we can see it discretized the age into seven intervals with cut-offs at 21.50, 23.50, 27.50, 35.50, 43.50, 54.50 and
61.50, respectively, while the capital-gain got split into many intervals with several cut-offs. The final weight (fnl-
wgt), for instance, was left with a single interval and thus removed.

On the right, we can select a specific discretization method for each attribute. Attribute “fnlwgt” would be remo-
ved by the MDL-based discretization, so to prevent its removal, we select the attribute and choose, for instance,
Equal-frequency discretization. We could also choose to leave the attribute continuous.

3. Produce a report.

4. Tick Apply automatically for the widget to automatically commit changes. Alternatively, press Apply.

Example
In the schema below, we show the Iris data set with continuous attributes (as in the original data file) and with di-
scretized attributes.

Edit Domain

Signals
Inputs:

Data

An input data set

Outputs:

Data

An edited output data set

Description
This widget can be used to edit/change a data set’s domain.

1. All features (including meta attributes) from the input data set are listed in the Domain Features list in the box
on the left. Selecting one feature displays an editor on the right.

2. The name of the feature can be changed in the Name line edit. For Discrete features, value names can also be
changed in the Values list box. Additonal feature annotations can be added/removed/edited in the Labels box. To
add a new label, click the “+” button and add the Key and Value columns for the new entry. Selecting an existing
label and pressing “-” will remove the annotation.

3. To revert the changes made to the feature, press the Reset Selected button in the Reset box while the feature is
selected in the Domain Features list. Pressing Reset All will reset all features in the domain at the same time.

4. Pressing the Apply button will send the changed domain data set to the output channel.

Example
Below, we demonstrate how to simply edit an existing domain. We selected the lenses.tab data set and edited the per-
scription attribute. Where in the original we had the values myope and hypermetrope, we changed it into near-
sightedness and farsightedness instead. For an easier comparison, we fed both the original and edited data into the
Data Table widget.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Feature Constructor

Add new features to your data set.

Signals
Inputs:

Data

A data set

Outputs:

Data

A modified data set

Description
The Feature Constructor allows you to manually add features (columns) into your data set. The new feature can
be a computation of an existing one or a combination of several (addition, subtraction, etc.). You can choose what
type of feature it will be (discrete, continuous or string) and what its parameters are (name, value, expression). For
continuous variables you only have to construct an expression in Python.

1. List of constructed variables
2. Add or remove variables.
3. New feature name
4. Expression in Python
5. Select a feature.
6. Select a function.
7. Produce a report.
8. Press Send to communicate changes.

For discrete variables, however, there’s a bit more work. First add or remove the values you want for the new feature.
Then select the base value and the expression. In the example below, we have constructed an expression with ‘if lower
than’ and defined three conditions; the program ascribes 0 (which we renamed to lower) if the original value is lower
than 6, 1 (mid) if it is lower than 7 and 2 (higher) for all the other values. Notice that we use an underscore for the
feature name (e.g. petal_length).

1. List of variable definitions
2. Add or remove variables
3. New feature name
4. Expression in Python
5. Select a feature.
6. Select a function.
7. Assign values.
8. Produce a report.
9. Press Send to communicate changes.

Example
With the Feature Constructor you can easily adjust or combine existing features into new ones. Below, we added
one new discrete feature to the Titanic data set. We created a new attribute called Financial status and set the values
to be rich if the person belongs to the first class (status = first) and not rich for everybody else. We can see the new
data set with Data Table widget.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Hints
If you are unfamiliar with Python math language, here’s a quick introduction.

+, - to add, subtract
* to multiply
/ to divide
% to divide and return the remainder
** for exponent (for square root square by 0.5)
// for floor division
<, >, <=, >= less than, greater than, less or equal, greater or equal
== for equal
!= for not equal

As in the example: (value) if (feature name) < (value), else (value) if (feature name) < (value), else (value)

[Use value 1 if feature is less than specified value, else use value 2 if feature is less than specified value 2, else use va-
lue 3.]

See more here.

http://www.tutorialspoint.com/python/python_basic_operators.htm

File

Reads attribute-value data from an input file.

Signals
Inputs:

(None)

Outputs:

Data

Attribute-valued data from the input file

Description
The File widget reads the input data file (data table with data instances) and sends the data set to its output channel.
The history of most recently opened files is maintained in the widget. The widget also includes a directory with sam-
ple data sets that come pre-installed with Orange.

The widget reads data from Excel (.xlsx), simple tab-delimited (.txt), comma-separated files (.csv) or URLs.

1. Browse through previously opened data files, or load any of the sample ones.
2. Browse for a data file.

3. Reloads currently selected data file.
4. Insert data from URL adresses, including data from Google Sheets.

https://docs.orange.biolab.si/3/visual-programming/loading-your-data/index.html

4. Insert data from URL adresses, including data from Google Sheets.
5. Information on the loaded data set: data set size, number and types of data features.
6. Additional information on the features in the data set. Features can be edited by double-clicking on them. The

user can change the attribute names, select the type of variable per each attribute (Continuous, Nominal, String,
Datetime), and choose how to further define the attributes (as Features, Targets or Meta). The user can also de-
cide to ignore an attribute.

7. Browse documentation data sets.
8. Produce a report.

Example
Most Orange workflows would probably start with the File widget. In the schema below, the widget is used to read
the data that is sent to both the Data Table and the Box Plot widget.

Loading your data
Orange can import any comma, .xlsx or tab-delimited data file or URL. Use the File widget and then, if needed,
select class and meta attributes.
To specify the domain and the type of the attribute, attribute names can be preceded with a label followed by a
hash. Use c for class and m for meta attribute, i to ignore a column, and C, D, S for continuous, discrete and
string attribute types. Examples: C#mpg, mS#name, i#dummy. Make sure to set Import Options in File widget
and set the header to Orange simplified header.
Orange’s native format is a tab-delimited text file with three header rows. The first row contains attribute names,
the second the type (continuous, discrete or string), and the third the optional element (class, meta or
string).

Read more on loading your data here.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html#
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html#
https://docs.orange.biolab.si/3/visual-programming/loading-your-data/index.html

Image Viewer

Displays images that come with a data set.

Signals
Inputs:

Data

A data set with images.

Outputs:

Data

Images that come with the data.

Description
The Image Viewer widget can display images from a data set, which are stored locally or on the internet. It can be
used for image comparison, while looking for similarities or discrepancies between selected data instances (e.g. bac-
terial growth or bitmap representations of handwriting).

1. Information on the data set
2. Select the column with image data (links).
3. Select the column with image titles.
4. Zoom in or out.
5. Saves the visualization in a file.
6. Tick the box on the left to commit changes automatically. Alternatively, click Send.

Examples
A very simple way to use this widget is to connect the File widget with Image Viewer and see all the images that
come with your data set.

Alternatively, you can visualize only selected instances, as shown in the example below.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

Impute

Replaces unknown values in the data.

Signals
Inputs

Data

A data set.

Learner for Imputation

A learning algorithm to be used when values are imputed with a predictive model. This algorithm, if given, sub-
stitutes the default (1-NN).

Outputs

Data

The same data set as in the input, but with the missing values imputed.

Description
Some Orange’s algorithms and visualizations cannot handle unknown values in the data. This widget does what stati-
sticians call imputation: it substitutes missing values by values either computed from the data or set by the user.

1. In the top-most box, Default method, the user can specify a general imputation technique for all attributes.

Don’t Impute does nothing with the missing values.
Average/Most-frequent uses the average value (for continuous attributes) or the most common value (for
discrete attributes).
As a distinct value creates new values to substitute the missing ones.
Model-based imputer constructs a model for predicting the missing value, based on values of other attri-
butes; a separate model is constructed for each attribute. The default model is 1-NN learner, which takes the
value from the most similar example (this is sometimes referred to as hot deck imputation). This algorithm
can be substituted by one that the user connects to the input signal Learner for Imputation. Note, however,
that if there are discrete and continuous attributes in the data, the algorithm needs to be capable of handling
them both; at the moment only 1-NN learner can do that. (In the future, when Orange has more regressors,
the Impute widget may have separate input signals for discrete and continuous models.)
Random values computes the distributions of values for each attribute and then imputes by picking ran-
dom values from them.
Remove examples with missing values removes the example containing missing values. This check also
applies to the class attribute if Impute class values is checked.

2. It is possible to specify individual treatment for each attribute, which overrides the default treatment set. One can
also specify a manually defined value used for imputation. In the screenshot, we decided not to impute the values
of “normalized-losses” and “make”, the missing values of “aspiration” will be replaced by random values, while
the missing values of “body-style” and “drive-wheels” are replaced by “hatchback” and “fwd”, respectively. If the
values of “length”, “width” or “height” are missing, the example is discarded. Values of all other attributes use the
default method set above (model-based imputer, in our case).

3. The imputation methods for individual attributes are the same as default. methods.
4. Restore All to Default resets the individual attribute treatments to default.
5. Produce a report.
6. All changes are committed immediately if Apply automatically is checked. Otherwise, Apply needs to be ticked

to apply any new settings.

Example
To demonstrate how the Impute widget works, we played around with the Iris data set and deleted some of the data.
We used the Impute widget and selected the Model-based imputer to impute the missing values. In another Data
Table, we see how the question marks turned into distinct values (“Iris-setosa, “Iris-versicolor”).

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Merge Data

Merges two data sets, based on values of selected attributes.

Signals
Inputs:

Data

Attribute-valued data set.

Extra Data

Attribute-valued data set.

Outputs:

Data

Instances from input data to which attributes from input extra data are added.

Description
The Merge Data widget is used to horizontally merge two data sets, based on values of selected attributes. In the in-
put, two data sets are required, data and extra data. The widget allows selection of an attribute from each domain,
which will be used to perform the merging. The widget produces one output. It corresponds to instances from the in-
put data to which attributes from input extra data are appended.

Merging is done by values of selected (merging) attributes. First, the value of the merging attribute from Data is ta-
ken and instances from Extra Data are searched for matching values. If more than a single instance from Extra Data
was to be found, the attribute is removed from available merging attributes.

1. Information on Data
2. Information on Extra Data
3. Merging type. Append columns from Extra Data outputs all instances from Data appended by matching in-

stances from Extra Data. When no match is found, unknown values are appended. Find matching rows outpu-
ts similar as above, except hen no match is found, instances are excluded. Concatenate tables, merge rows
outputs all instances from both inputs, even though the match may not be found. In that case unknown values

are assigned.
4. List of comparable attributes from Data
5. List of comparable attributes from Extra Data
6. Produce a report.

Example
Merging two data sets results in appending new attributes to the original file, based on a selected common attribute.
In the example below, we wanted to merge the zoo.tab file containing only factual data with zoo-with-images.tab
containing images. Both files share a common string attribute names. Now, we create a workflow connecting the two
files. The zoo.tab data is connected to Data input of the Merge Data widget, and the zoo-with-images.tab data to
the Extra Data input. Outputs of the Merge Data widget is then connected to the Data Table widget. In the latter,
the Merged Data channels are shown, where image attributes are added to the original data.

The case where we want to include all instances in the output, even those where no match by attribute names was
found, is shown in the following workflow.

https://docs.orange.biolab.si/3/visual-programming/_downloads/zoo-with-images.tab
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

The third type of merging is shown in the next workflow. The output consist of both inputs, with unknown values as-
signed where no match was found.

Hint
If the two data sets consist of equally-named attributes (other than the ones used to perform the merging), Orange
will check by default for consistency of the values of these attributes and report an error in case of non-matching va-
lues. In order to avoid the consistency checking, make sure that new attributes are created for each data set: you may
use the ‘Columns with the same name in different files represent different variables’ option in the File widget for
loading the data.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

Outliers

Simple outlier detection by comparing distances between instances.

Signals
Inputs:

Data

A data set

Distances

A distance matrix

Outputs:

Outliers

A data set containing instances scored as outliers

Inliers

A data set containing instances not scored as outliers

Description
The Outliers widget applies one of the two methods for outlier detection. Both methods apply classification to the
data set, one with SVM (multiple kernels) and the other with elliptical envelope. One-class SVM with non-linear ker-
nels (RBF) performs well with non-Gaussian distributions, while Covariance estimator works only for data with
Gaussian distribution.

1. Information on the input data, number of inliers and outliers based on the selected model.
2. Select the Outlier detection method:

One class SVM with non-linear kernel (RBF): classifies data as similar or different from the core class

Nu is a parameter for the upper bound on the fraction of training errors and a lower bound of the frac-
tion of support vectors
Kernel coefficient is a gamma parameter, which specifies how much influence a single data instance
has

Covariance estimator: fits ellipsis to central points with Mahalanobis distance metric

Contamination is the proportion of outliers in the data set
Support fraction specifies the proportion of points included in the estimate

3. Produce a report.
4. Click Detect outliers to output the data.

Example
Below, is a simple example of how to use this widget. We used the Iris data set to detect the outliers. We chose the
one class SVM with non-linear kernel (RBF) method, with Nu set at 20% (less training errors, more support vectors).
Then we observed the outliers in the Data Table widget, while we sent the inliers to the Scatter Plot.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Paint Data

Paints data on a 2D plane. You can place individual data points or use a brush to paint larger data sets.

Signals
Inputs

(None)

Outputs

Data

Attribute-valued data set created in the widget

Description
The widget supports the creation of a new data set by visually placing data points on a two-dimension plane. Data
points can be placed on the plane individually (Put) or in a larger number by brushing (Brush). Data points can be-
long to classes if the data is intended to be used in supervised learning.

1. Name the axes and select a class to paint data instances. You can add or remove classes. Use only one class to

create classless, unsupervised data sets.
2. Drawing tools. Paint data points with Brush (multiple data instances) or Put (individual data instance). Select

data points with Select and remove them with the Delete/Backspace key. Reposition data points with Jitter
(spread) and Magnet (focus). Use Zoom and scroll to zoom in or out. Below, set the radius and intensity for
Brush, Put, Jitter and Magnet tools.

3. Reset to Input Data.
4. Save Image saves the image to your computer in a .svg or .png format.
5. Produce a report.
6. Tick the box on the left to automatically commit changes to other widgets. Alternatively, press Send to apply

them.

Example
In the example below, we have painted a data set with 4 classes. Such data set is great for demonstrating k-means
and hierarchical clustering methods. In the screenshot, we see that k-means, overall, recognizes clusters better than
hierarchical clustering. It returns a score rank, where the best score (the one with the highest value) means the most
likely number of clusters. Hierarchical clustering, however, doesn’t group the right classes together. This is a great
tool for learning and exploring statistical concepts.

https://en.wikipedia.org/wiki/Jitter
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/kmeansclustering.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/hierarchicalclustering.html

Preprocess

Preprocesses data with selected methods.

Signals
Inputs:

Data

A data set.

Outputs:

Preprocessor

A preprocessing method.

Preprocessed Data

Data preprocessed with selected methods.

Description
Preprocessing is crucial for achieving better-quality analysis results. The Preprocess widget offers five preproces-
sing methods to improve data quality. In this widget, you can immediately discretize continuous values or continuize
discrete ones, impute missing values, select relevant features or center and scale them. Basically, this widget combi-
nes four separate widgets for simpler processing.

1. List of preprocessors. You drag the preprocessors you wish to use to the right side of the widget.
2. Discretization of continuous values
3. Continuization of discrete values
4. Impute missing values or remove them.
5. Select the most relevant features by information gain, gain ratio, Gini index.
6. Select random features
7. Normalize features
8. Randomize
9. When the box is ticked (Send Automatically), the widget will communicate changes automatically. Alternatively,

click Send.
10. Produce a report.

Example
In the example below, we have used the adult data set and preprocessed the data. We continuized discrete values
(age, education and marital status…) as one attribute per value, we imputed missing values (replacing ? with average
values), selected 10 most relevant attributes by Information gain, centered them by mean and scaled by span. We
can observe the changes in the Data Table and compare it to the non-processed data.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Purge Domain

Removes unused attribute values and useless attributes, sorts the remaining values.

Signals
Inputs:

Data

A data set.

Outputs:

Data

A filtered data set

Description
Definitions of nominal attributes sometimes contain values which don’t appear in the data. Even if this does not hap-
pen in the original data, filtering the data, selecting examplary subsets and alike can remove all examples for which
the attribute has some particular value. Such values clutter data presentation, especially various visualizations, and
should be removed.

After purging an attribute, it may become single-valued or, in extreme case, have no values at all (if the value of this
attribute was undefined for all examples). In such cases, the attribute can be removed.

A different issue is the order of attribute values: if the data is read from a file in a format in which values are not de-
clared in advance, they are sorted “in order of appearance”. Sometimes we would prefer to have them sorted
alphabetically.

1. Purge attributes.
2. Purge classes.
3. Purge meta attributes.
4. Information on the filtering process
5. Produce a report.
6. If Apply automatically is ticked, the widget will output data at each change of widget settings.

Such purification is done by the widget Purge Domain. Ordinary attributes and class attributes are treated separa-
tely. For each, we can decide if we want the values sorted or not. Next, we may allow the widget to remove attributes
with less than two values or remove the class attribute if there are less than two classes. Finally, we can instruct the
widget to check which values of attributes actually appear in the data and remove the unused values. The widget can-
not remove values if it is not allowed to remove the attributes, since having attributes without values makes no sense.

The new, reduced attributes get the prefix “R”, which distinguishes them from the original ones. The values of new
attributes can be computed from the old ones, but not the other way around. This means that if you construct a clas-
sifier from the new attributes, you can use it to classify the examples described by the original attributes. But not the
opposite: constructing a classifier from the old attributes and using it on examples described by the reduced ones
won’t work. Fortunately, the latter is seldom the case. In a typical setup, one would explore the data, visualize it, filter
it, purify it… and then test the final model on the original data.

Example
The Purge Domain widget would typically appear after data filtering, for instance when selecting a subset of visua-
lized examples.

In the above schema, we play with the adult.tab data set: we visualize it and select a portion of the data, which con-
tains only four out of the five original classes. To get rid of the empty class, we put the data through Purge Domain
before going on to the Box Plot widget. The latter shows only the four classes which are in the Purge Data output.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html

To see the effect of data purification, uncheck Remove unused class variable values and observe the effect this has on
Box Plot.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html

Python Script

Extends functionalities through Python scripting.

Signals
Inputs:

in_data (Orange.data.Table)

Input data set bound to in_data variable in the script’s local namespace.

in_distance (Orange.core.SymMatrix)

Input symmetric matrix bound to in_distance variable in the script’s local namespace.

in_learner (Orange.classification.Learner)

Input learner bound to in_learner variable in the script’s local namespace.

in_classifier (Orange.classification.Learner)

Input classifier bound to in_classifier variable in the script’s local namespace.

in_object (object)

Input python object bound to in_object variable in the script’s local namespace.

Outputs:

out_data (Orange.data.Table)

Data set retrieved from out_data variable in the script’s local namespace after execution.

out_distance (Orange.core.SymMatrix)

Symmetric matrix retrieved from out_distance variable in the script’s local namespace after execution.

out_learner (Orange.classification.Learner)

Learner retrieved from out_learner variable in the script’s local namespace.

out_classifier (Orange.classification.Learner)

Classifier retrieved from out_classifier variable in the script’s local namespace after execution.

out_object (object)

Python object retrieved from out_object variable in the script’s local namespace after execution.

Description
Python Script widget can be used to run a python script in the input, when a suitable functionality is not imple-
mented in an existing widget. The script has in_data, in_distance, in_learner, in_classifier and in_object va-
riables (from input signals) in its local namespace. If a signal is not connected or it did not yet receive any data, those
variables contain None.

After the script is executed, out_data, out_distance, … variables from the script’s local namespace are extracted and
used as outputs of the widget. The widget can be further connected to other widgets for visualizing the output.

For instance the following script would simply pass on all signals it receives:

out_data = in_data
out_distance = in_distance
out_learner = in_learner
out_classifier = in_classifier
out_object = in_object

Note:

You should not modify the input objects in place.

1. Info box contains names of basic operators for Orange Python script.
2. The Library control can be used to manage multiple scripts. Pressing “+” will add a new entry and open it in the

Python script editor. When the script is modified, its entry in the Library will change to indicate it has unsaved
changes. Pressing Update will save the script (keyboard shortcut ctrl + s). A script can be removed by selecting it
and pressing the “-” button.

3. Pressing Execute in the Run box executes the script (using exec). Any script output (from print) is captured and
displayed in the Console below the script. If Auto execute is checked, the script is run any time inputs to the wid-
get change.

4. The Python script editor on the left can be used to edit a script (it supports some rudimentary syntax
highlighting).

5. Console displays the output of the script.

Examples

Python Script widget is intended to extend functionalities for advanced users.

One can, for example, do batch filtering by attributes. We used zoo.tab for the example and we filtered out all the at-
tributes that have more than 5 discrete values. This in our case removed only ‘leg’ attribute, but imagine an example
where one would have many such attributes.

from Orange.data import Domain, Table
domain = Domain([attr for attr in in_data.domain.attributes
 if attr.is_continuous or len(attr.values) <= 5],
 in_data.domain.class_vars)
out_data = Table(domain, in_data)

The second example shows how to round all the values in a few lines of code. This time we used wine.tab and roun-
ded all the values to whole numbers.

import numpy as np
out_data = in_data.copy()
#copy, otherwise input data will be overwritten
np.round(out_data.X, 0, out_data.X)

The third example introduces some gaussian noise to the data. Again we make a copy of the input data, then walk th-
rough all the values with a double for loop and add random noise.

import random
from Orange.data import Domain, Table
new_data = in_data.copy()
for inst in new_data:
 for f in inst.domain.attributes:
 inst[f] += random.gauss(0, 0.02)
out_data = new_data

The final example uses Orange3-Text add-on. Python Script is very useful for custom preprocessing in text mining,
extracting new features from strings, or utilizing advanced nltk or gensim functions. Below, we simply tokenized our
input data from deerwester.tab by splitting them by whitespace.

print('Running Preprocessing ...')
tokens = [doc.split(' ') for doc in in_data.documents]
print('Tokens:', tokens)
out_object = in_data
out_object.store_tokens(tokens)

You can add a lot of other preprocessing steps to further adjust the output. The output of Python Script can be used
with any widget that accepts the type of output your script produces. In this case, connection is green, which signali-
zes the right type of input for Word Cloud widget.

Randomize

Shuffles classes, attributes and/or metas of an input data set.

Signals
Inputs:

Data

Data set.

Outputs:

Data

Randomized data set.

Description
The Randomize widget receives a data set in the input and outputs the same data set in which the classes, attributes
or/and metas are shuffled.

1. Select group of columns of the data set you want to shuffle.
2. Select proportion of the data set you want to shuffle.
3. Produce replicable output.
4. If Apply automatically is ticked, changes are committed automatically. Otherwise, you have to press Apply after

each change.
5. Produce a report.

Example
The Randomize widget is usually placed right after (e.g. File widget. The basic usage is shown in the following
workflow, where values of class variable of Iris data set are randomly shuffled.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

In the next example we show how shuffling class values influences model performance on the same data set as above.

Rank

Ranking of attributes in classification or regression data sets.

Signals
Inputs:

Data

An input data set.

Scorer (multiple)

Models that implement the feature scoring interface, such as linear / logistic regression, random forest, stocha-
stic gradient descent, etc.

Outputs:

Reduced Data

A data set whith selected attributes.

Description
The Rank widget considers class-labeled data sets (classification or regression) and scores the attributes according
to their correlation with the class.

1. Select attributes from the data table.
2. Data table with attributes (rows) and their scores by different scoring methods (columns)
3. Produce a report.
4. If ‘Send Automatically’ is ticked, the widget automatically communicates changes to other widgets.

Scoring methods
1. Information Gain: the expected amount of information (reduction of entropy)

2. Gain Ratio: a ratio of the information gain and the attribute’s intrinsic information, which reduces the bias to-
wards multivalued features that occurs in information gain

3. Gini: the inequality among values of a frequency distribution
4. ANOVA: the difference between average vaules of the feature in different classes
5. Chi2: dependence between the feature and the class as measure by the chi-square statistice
6. ReliefF: the ability of an attribute to distinguish between classes on similar data instances
7. FCBF (Fast Correlation Based Filter): entropy-based measure, which also identifies redundancy due to pairwise

correlations between features

Additionally, you can connect certain learners that enable scoring the features according to how important they are in
models that the learners build (e.g. Linear / Logistic Regression, Random Forest, SGD, …).

Example: Attribute Ranking and Selection
Below, we have used the Rank widget immediately after the File widget to reduce the set of data attributes and inclu-
de only the most informative ones:

Notice how the widget outputs a data set that includes only the best-scored attributes:

https://en.wikipedia.org/wiki/Information_gain_ratio
https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/One-way_analysis_of_variance
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Relief_(feature_selection)
https://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf
https://docs.orange.biolab.si/3/visual-programming/widgets/model/linearregression.html#model-lr
https://docs.orange.biolab.si/3/visual-programming/widgets/model/logisticregression.html#model-logit
https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html#model-rf
https://docs.orange.biolab.si/3/visual-programming/widgets/model/stochasticgradient.html#model-sgd
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

Example: Feature Subset Selection for Machine Learning
What follows is a bit more complicated example. In the workflow below, we first split the data into a training set and
a test set. In the upper branch, the training data passes through the Rank widget to select the most informative attri-
butes, while in the lower branch there is no feature selection. Both feature selected and original data sets are passed
to their own Test & Score widgets, which develop a Naive Bayes classifier and score it on a test set.

For data sets with many features, a naive Bayesian classifier feature selection, as shown above, would often yield a
better predictive accuracy.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html

Save Data

Saves data to a file.

Signals
Inputs:

Data

A data set.

Outputs:

(None)

Description
The Save Data widget considers a data set provided in the input channel and saves it to a data file with a specified
name. It can save the data as a tab-delimited or a comma-separated file.

The widget does not save the data every time it receives a new signal in the input as this would constantly (and, mo-
stly, inadvertently) overwrite the file. Instead, the data is saved only after a new file name is set or the user pushes the
Save button.

1. Save by overwriting the existing file.
2. Save as to create a new file.

Example
In the workflow below, we used the Zoo data set. We loaded the data into the Scatter Plot widget, with which we se-
lected a subset of data instances and pushed them to the Save Data widget to store them in a file.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Select Columns

Manual selection of data attributes and composition of data domain.

Signals
Inputs:

Data

Attribute-valued data set.

Outputs:

Data

Attribute-valued data set composed using the domain specification from the widget.

Description
The Select Columns widget is used to manually compose your data domain. The user can decide which attributes
will be used and how. Orange distinguishes between ordinary attributes, (optional) class attributes and meta attribu-
tes. For instance, for building a classification model, the domain would be composed of a set of attributes and a di-
screte class attribute. Meta attributes are not used in modelling, but several widgets can use them as instance labels.

Orange attributes have a type and are either discrete, continuous or a character string. The attribute type is marked
with a symbol appearing before the name of the attribute (D, C, S, respectively).

1. Left-out data attributes that will not be in the output data file
2. Data attributes in the new data file

https://en.wikipedia.org/wiki/Data_domain

3. Target variable. If none, the new data set will be without a target variable.
4. Meta attributes of the new data file. These attributes are included in the data set but are, for most methods, not

considered in the analysis.
5. Produce a report.
6. Reset the domain composition to that of the input data file.
7. Tick if you wish to auto-apply changes of the data domain.
8. Apply changes of the data domain and send the new data file to the output channel of the widget.

Examples
In the workflow below, the Iris data from the File widget is fed into the Select Columns widget, where we select to
output only two attributes (namely petal width and petal length). We view both the original data set and the data set
with selected columns in the Data Table widget.

For a more complex use of the widget, we composed a workflow to redefine the classification problem in the heart-
disease data set. Originally, the task was to predict if the patient has a coronary artery diameter narrowing. We chan-
ged the problem to that of gender classification, based on age, chest pain and cholesterol level, and informatively kept
the diameter narrowing as a meta attribute.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Select Rows

Selects data instances based on conditions over data features.

Signals
Inputs:

Data

Data set.

Outputs:

Matching Data

Instances that match the conditions.

Non-Matching Data

Instances that do not match the conditions.

Description
This widget selects a subset from an input data set, based on user-defined conditions. Instances that match the selec-
tion rule are placed in the output Matching Data channel.

Criteria for data selection are presented as a collection of conjuncted terms (i.e. selected items are those matching all
the terms in ‘Conditions’).

Condition terms are defined through selecting an attribute, selecting an operator from a list of operators, and, if nee-
ded, defining the value to be used in the condition term. Operators are different for discrete, continuous and string
attributes.

1. Conditions you want to apply, their operators and related values
2. Add a new condition to the list of conditions.
3. Add all the possible variables at once.

4. Remove all the listed variables at once.
5. Information on the input data set and information on instances that match the condition(s)
6. Purge the output data.
7. When the Send automatically box is ticked, all changes will be automatically communicated to other widgets.
8. Produce a report.

Any change in the composition of the condition will update the information pane (Data Out).

If Send automatically is selected, then the output is updated on any change in the composition of the condition or
any of its terms.

Example
In the workflow below, we used the Zoo data from the File widget and fed it into the Select Rows widget. In the wid-
get, we chose to output only two animal types, namely fish and reptiles. We can inspect both the original data set and
the data set with selected rows in the Data Table widget.

In the next example, we used the data from the Titanic data set and similarly fed it into the Box Plot widget. We first
observed the entire data set based on survival. Then we selected only first class passengers in the Select Rows wid-
get and fed it again into the Box Plot. There we could see all the first class passengers listed by their survival rate and
grouped by gender.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html

SQL Table

Reads data from an SQL database.

Signals
Inputs:

(None)

Outputs:

Data

Attribute-valued data from the database

Description
The SQL widget accesses data stored in an SQL database. It can connect to PostgreSQL (requires psycopg2 module)
or SQL Server (requires pymssql module).

http://initd.org/psycopg/
https://www.microsoft.com/en-us/sql-server/
http://pymssql.org/en/stable/

Transpose

Transposes a data table.

Signals
Inputs:

Data

A data set.

Outputs:

Data

Transposed data set

Description
Transpose widget transposes data table.

Example
This is a simple workflow showing how to use Transpose. Connect the widget to File widget. The output of Trans-
pose is a transposed data table with rows as columns and columns as rows. You can observe the result in a Data Ta-
ble.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Box Plot

Shows distribution of attribute values.

Signals
Inputs:

Data

An input data set

Outputs:

(None)

Description
The Box Plot widget shows the distributions of attribute values. It is a good practice to check any new data with this
widget to quickly discover any anomalies, such as duplicated values (e.g. gray and grey), outliers, and alike.

1. Select the variable you want to see plotted.
2. Choose Grouping to see box plots displayed by class.
3. When instances are grouped by class, you can change the display mode. Annotated boxes will display the end va-

lues, the mean and the median, while compare medians and compare means will, naturally, compare the selected
value between class groups.

https://en.wikipedia.org/wiki/Box_plot

For continuous attributes the widget displays:

4. The mean (the dark blue vertical line)
5. Border values for the standard deviation of the mean. The blue highlighted area is the entire standard deviation

of the mean.
6. The median (yellow vertical line). The thin blue line represents the area between the first (25%) and the third

(75%) quantile, while the thin dotted line represents the entire range of values (from the lowest to the highest va-
lue in the data set for the selected parameter).

7. Save image.
8. Produce a report.

For discrete attributes, the bars represent the number of instances with each particular attribute value. The plot sho-
ws the number of different animal types in the Zoo data set: there are 41 mammals, 13 fish, 20 birds and so on.

Example
The Box Plot widget is most commonly used immediately after the File widget to observe the statistical properties of
a data set. It is also useful for finding the properties of a specific data set, for instance a set of instances manually de-
fined in another widget (e.g. Scatterplot) or instances belonging to some cluster or a classification tree node, as sho-
wn in the schema below.

https://en.wikipedia.org/wiki/Standard_deviation#Standard_deviation_of_the_mean
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

CN2 Rule Viewer

CN2 Rule Viewer

Signals
Inputs:

Data

Data set to filter.

CN2 Rule Classifier

CN2 Rule Classifier, including a list of induced rules.

Outputs:

Filtered Data

If data is connected, upon active selection (at least one rule is selected), filtered data is emitted. Output are
data instances covered by all selected rules.

Description
A widget that displays CN2 classification rules. If data is also connected, upon rule selection, one can analyze which
instances abide to the conditions.

1. Original order of induced rules can be restored.
2. When rules are many and complex, the view can appear packed. For this reason, compact view was implemen-

ted, which allows a flat presentation and a cleaner inspection of rules.
3. Click Report to bring up a detailed description of the rule induction algorithm and its parameters, the data do-

main, and induced rules.

https://en.wikipedia.org/wiki/CN2_algorithm

Additionally, upon selection, rules can be copied to clipboard by pressing the default system shortcut (ctrl+C,
cmd+C).

Examples
In the schema below, the most common use of the widget is presented. First, the data is read and a CN2 rule classifier
is trained. We are using titanic data set for the rule constrution. The rules are then viewed using the Rule Viewer. To
explore different CN2 algorithms and understand how adjusting parameters influences the learning process, Rule
Viewer should be kept open and in sight, while setting the CN2 learning algorithm (the presentation will be updated
promptly).

Selecting a rule outputs filtered data instances. These can be viewed in a Data Table.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/cn2ruleviewer.html#
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Distributions

Displays value distributions for a single attribute.

Signals
Inputs:

Data

An input data set.

Outputs:

(None)

Description
The Distributions widget displays the value distribution of discrete or continuous attributes. If the data contains a
class variable, distributions may be conditioned on the class.

For discrete attributes, the graph displayed by the widget shows how many times (e.g., in how many instances) each
attribute value appears in the data. If the data contains a class variable, class distributions for each of the attribute
values will be displayed as well (like in the snapshot below). In order to create this graph, we used the Zoo data set.

https://en.wikipedia.org/wiki/Frequency_distribution

1. A list of variables for distributions display
2. If Bin continuous variables is ticked, the widget will discretize continuous variables by assigning them to inter-

vals. The number of intervals is set by precision scale. Alternatively, you can set smoothness for the distribution
curves of continuous variables.

3. The widget may be requested to display value distributions only for instances of certain class (Group by). Show
relative frequencies will scale the data by percentage of the data set.

4. Show probabilities.
5. Save image saves the graph to your computer in a .svg or .png format.
6. Produce a report.

For continuous attributes, the attribute values are displayed as a function graph. Class probabilities for continuous
attributes are obtained with gaussian kernel density estimation, while the appearance of the curve is set with the Pre-
cision bar (smooth or precise). For the purpose of this example, we used the Iris data set.

In class-less domains, the bars are displayed in gray. Here we set Bin continuous variables into 10 bins, which distri-
butes variables into 10 intervals and displays averages of these intervals as histograms (see 2. above). We used the
Housing data set.

FreeViz

Displays FreeViz projection.

Signals
Inputs:

Data

An input data set.

Data Subset

A subset of instances from the input data set.

Outputs:

Selected Data

A subset of instances that the user manually selected from the freeviz plot.

Data

Data with an additional column showing whether a point is selected. If more than one group is selected then also
the group name is written instead.

Components

FreeViz vectors

Description
FreeViz uses a paradigm borrowed from particle physics: points in the same class attract each other, those from dif-
ferent class repel each other, and the resulting forces are exerted on the anchors of the attributes, that is, on unit vec-
tors of each of the dimensional axis. The points cannot move (are projected in the projection space), but the attribute
anchors can, so the optimization process is a hill-climbing optimization where at the end the anchors are placed such
that forces are in equilibrium. The button Optimize is used to invoke the optimization process. The result of the opti-
mization may depend on the initial placement of the anchors, which can be set in a circle, arbitrary or even manually.
The later also works at any stage of optimization, and we recommend to play with this option in order to understand
how a change of one anchor affects the positions of the data points. In any linear projection, projections of unit vector
that are very short compared to the others indicate that their associated attribute is not very informative for particu-
lar classification task. Those vectors, that is, their corresponding anchors, may be hidden from the visualization using
Radius slider in Show anchors box.

1. Two initial positions of anchors are possible: random and circular. Optimization moves anchors in an optimal
position.

2. Set the color of the displayed points (you will get colors for discrete values and grey-scale points for continuous).
Set label, shape and size to differentiate between points. Set symbol size and opacity for all data points.

3. Anchors inside a circle are hidden. Circle radius can be be changed using a slider.

4. Adjust plot properties:

Set jittering to prevent

the dots from overlapping (especially for discrete attributes).

Show legend displays a legend on the right. Click and drag the legend to move it.
Show class density colors the graph by class (see the screenshot below).
Label only selected points allows you to select individual data instances and label them.

5. Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances
works as an angular/square selection tool. Double click to move the projection. Scroll in or out for zoom.

6. If Send automatically is ticked, changes are communicated automatically. Alternatively, press Send.

7. Save Image saves the created image to your computer in a .svg or .png format.

https://en.wikipedia.org/wiki/Jitter

8. Produce a report.

Manually move anchors

One can manually move anchors. Use a mouse pointer and hover above the end of an anchor. Click the left button
and then you can move selected anchor where ever you want.

Selection
Selection can be used to manually defined subgroups in the data. Use Shift modifier when selecting data instances to
put them into a new group. Shift + Ctrl (or Shift + Cmd on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.

Explorative Data Analysis
The FreeViz, as the rest of Orange widgets, supports zooming-in and out of part of the plot and a manual selection
of data instances. These functions are available in the lower left corner of the widget. The default tool is Select, which
selects data instances within the chosen rectangular area. Pan enables you to move the plot around the pane. With
Zoom you can zoom in and out of the pane with a mouse scroll, while Reset zoom resets the visualization to its opti-
mal size. An example of a simple schema, where we selected data instances from a rectangular region and sent them
to the Data Table widget, is shown below.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Geo Map

Show data points on a world map.

Signals
Inputs:

Data

An input data set.

Data Subset

A subset of instances from the input data set.

Learner

A learning algorithm (classification or regression).

Outputs:

Selected Data

A subset of instances that the user has manually selected from the map.

Data

Data set with an appended meta attribute specifying selected and unselected data.

Description
Geo Map widget maps geo-spatial data on a world map. It only works on data sets containing latitude and longitude
variables. It also enables class predictions when a learner is provided on the input.

1. Define map properties: - Set the type of map: Black and White, OpenStreetMap, Topographic, Satellite, Print,
Light, Dark, Railyways and Watercolor. - Set latitude and longitude attributes, if the widget didn’t recognize them
automatically. Latitude values should be between -90(S) and 90(N) and longitude values between -180(W) and
180(E).

2. Overlay: - Set the target (class) for predictive mapping. A learner has to be provided on the input. The classifier is
trained on latitude and longitude pairs only (i.e. it maps lat/lon pairs to the selected attribute).

3. Set point parameters: - Color: color of data points by attribute values - Label: label data points with an attribute
(available when zoomed in) - Shape: shape of data points by attribute (available when zoomed in) - Size: size of
data points by attribute - Opacity: set transparency of data points - Symbol size: size of data points (small to lar-
ge) - Jittering: disperse overlaid data points - Cluster points: cluster neighboring points with naive greedy cluste-
ring (available when less than 600 points are in view)

4. If Send Selection Automatically is ticked, changes are communicated automatically. Alternatively, click Send Se-
lection. Save image saves the image to your computer in a .svg or .png format.

Note:

To select a subset of points from the map, hold Shift and draw a rectangle around the point you want to
output.

Examples
In the first example we will model class predictions on a map. We will use philadelphia-crime data set, load it with
File widget and connect it to Map. We can already observe the mapped points in Map. Now, we connect Tree to Map
and set target variable to Type. This will display the predicted type of crime for a specific region of Philadelphia city
(each region will be colored with a corresponding color code, explained in a legend on the right).

https://docs.orange.biolab.si/3/visual-programming/_images/GeoMap-stamped.png
http://www.openstreetmap.org/
https://github.com/Leaflet/Leaflet.markercluster
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html

The second example uses global-airports.csv data. Say we somehow want to predict the altitude of the area based so-
ley on the latitude and longitude. We again load the data with File widget and connect it to Map. Then we use a re-
gressor, say, KNN and connect it to Map as well. Now we set target to altitude and use Black and White map type. The
model guessed the Himalaya, but mades some errors elsewhere.

https://raw.githubusercontent.com/ajdapretnar/datasets/master/data/global_airports.csv
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/knn.html

Heat Map

Plots a heat map for a pair of attributes.

Signals
Inputs:

Data

An input data set.

Outputs:

Selected Data

A subset of instances that the user has manually selected from the map.

Description
Heat map is a graphical method for visualizing attribute values by class in a two-way matrix. It only works on data
sets containing continuous variables. The values are represented by color: the higher a certain value is, the darker the
represented color. By combining class and attributes on x and y axes, we see where the attribute values are the stron-
gest and where the weakest, thus enabling us to find typical features (discrete) or value range (continuous) for each
class.

https://en.wikipedia.org/wiki/Heat_map

1. The color scheme legend. Low and High are thresholds for the color palette (low for attributes with low values
and high for attributes with high values).

2. Merge data.
3. Sort columns and rows: - No Sorting (lists attributes as found in the data set) - Clustering (clusters data by si-

milarity) - Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)
4. Set what is displayed in the plot in Annotation & Legend. - If Show legend is ticked, a color chart will be di-

splayed above the map. - If Stripes with averages is ticked, a new line with attribute averages will be displayed
on the left. - Row Annotations adds annotations to each instance on the right. - Column Label Positions
places column labels in a selected place (None, Top, Bottom, Top and Bottom).

5. If Keep aspect ratio is ticked, each value will be displayed with a square (proportionate to the map).
6. If Send Automatically is ticked, changes are communicated automatically. Alternatively, click Send.
7. Save image saves the image to your computer in a .svg or .png format.
8. Produce a report.

Example
The Heat Map below displays attribute values for the Housing data set. The aforementioned data set concerns the
housing values in the suburbs of Boston. The first thing we see in the map are the ‘B’ and ‘Tax’ attributes, which are
the only two colored in dark orange. The ‘B’ attribute provides information on the proportion of blacks by town and
the ‘Tax’ attribute informs us about the full-value property-tax rate per $10,000. In order to get a clearer heat map,
we then use the Select Columns widget and remove the two attributes from the data set. Then we again feed the data
to the Heat map. The new projection offers additional information. By removing ‘B’ and ‘Tax’, we can see other deci-
ding factors, namely ‘Age’ and ‘ZN’. The ‘Age’ attribute provides information on the proportion of owner-occupied
units built prior to 1940 and the ‘ZN’ attribute informs us about the proportion of non-retail business acres per town.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectcolumns.html

The Heat Map widget is a nice tool for discovering relevant features in the data. By removing some of the more pro-
nounced features, we came across new information, which was hiding in the background.

References
Housing Data Set

https://archive.ics.uci.edu/ml/datasets/Housing

Linear Projection

A linear projection method with explorative data analysis.

Signals
Inputs:

Data

An input data set

Data Subset

A subset of data instances

Outputs:

Selected Data

A data subset that the user has manually selected in the projection.

Description
This widget displays linear projections of class-labeled data. Consider, for a start, a projection of the Iris data set sho-
wn below. Notice that it is the sepal width and sepal length that already separate Iris setosa from the other two, while
the petal length is the attribute best separating Iris versicolor from Iris virginica.

https://en.wikipedia.org/wiki/Projection_(linear_algebra)

1. Axes in the projection that are displayed and other available axes.
2. Set the color of the displayed dots (you will get colored dots for discrete values and grey-scale dots for conti-

nuous). Set opacity, shape and size to differentiate between instances.
3. Set jittering to prevent the dots from overlapping (especially for discrete attributes).
4. Select, zoom, pan and zoom to fit options for exploring the graph. Manual selection of data instances works as a

non-angular/free-hand selection tool. Double click to move the projection. Scroll in or out for zoom.
5. When the box is ticked (Auto commit is on), the widget will communicate the changes automatically. Alternative-

ly, click Commit.
6. Save Image saves the created image to your computer in a .svg or .png format.
7. Produce a report.

Example
The Linear Projection widget works just like other visualization widgets. Below, we connected it to the File widget
to see the set projected on a 2-D plane. Then we selected the data for further analysis and connected it to the Data Ta-
ble widget to see the details of the selected subset.

https://en.wikipedia.org/wiki/Jitter
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

References
Koren Y., Carmel L. (2003). Visualization of labeled data using linear transformations. In Proceedings of IEEE Infor-
mation Visualization 2003, (InfoVis‘03). Available here.

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile tool for the analysis of high-dimensional geno-
mic data. Briefings in Bioinformatics, 8(1), 32-44. Abstract here.

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3DDF0DB68D8AB9949820A19B0344C1F3?doi=10.1.1.13.8657&rep=rep1&type=pdf
http://bib.oxfordjournals.org/content/8/1/32.abstract

Mosaic Display

Display data in a mosaic plot.

Signals
Inputs:

Data

An input data set.

Data subset

An input data subset.

Outputs:

Selected data

A subset of instances that the user has manually selected from the plot.

Description
The Mosaic plot is a graphical representation of a two-way frequency table or a contingency table. It is used for vi-
sualizing data from two or more qualitative variables and was introduced in 1981 by Hartigan and Kleiner and expan-
ded and refined by Friendly in 1994. It provides the user with the means to more efficiently recognize relationships
between different variables. If you wish to read up on the history of Mosaic Display, additional reading is available
here.

http://www.datavis.ca/papers/moshist.pdf

1. Select the variables you wish to see plotted.
2. Select interior coloring. You can color the interior according to class or you can use the Pearson residual, which

is the difference between observed and fitted values, divided by an estimate of the standard deviation of the ob-
served value. If Compare to total is clicked, a comparison is made to all instances.

3. Save image saves the created image to your computer in a .svg or .png format.
4. Produce a report.

Example
We loaded the titanic data set and connected it to the Mosaic Display widget. We decided to focus on two variables,
namely status, sex and survival. We colored the interiors according to Pearson residuals in order to demonstrate the
difference between observed and fitted values.

We can see that the survival rates for men and women clearly deviate from the fitted value.

Nomogram

Nomograms for visualization of Naive Bayes and Logistic Regression classifiers.

Signals
Inputs:

Classifier

A trained classifier (Naive Bayes or Logistic regression).

Data

Data instance.

Description
The Nomogram enables some classifier’s (more precisely Naive Bayes classifier and Logistic Regression classifier)
visual representation. It offers an insight into the structure of the training data and effects of the attributes on the
class probabilities. Besides visualization of the classifier, the widget offers interactive support to prediction of class
probabilities. A snapshot below shows the nomogram of the Titanic data set, that models the probability for a passen-
ger not to survive the disaster of the Titanic.

1. Select the target class you want to model the probability for.
2. By default Scale is set to Log odds ration. For easier understanding and interpretation option Point scale can be

used. The unit is obtained by re-scaling the log odds so that the maximal absolute log odds ratio in the nomogram
represents 100 points.

3. When there are to many attributes in the plotted data set, you can choose to display only best ranked ones. It is
possible to choose from ‘No sorting’, ‘Name’, ‘Absolute importance’, ‘Positive influence’ and ‘Negative influence’

for Naive Bayes representation and from ‘No sorting’, ‘Name’ and ‘Absolute importance’ for Logistic Regression
representation.

To represent nomogram for Logistic Regressing classifier Iris data set is used:

1. The probability for the chosen target class is computed by 1. vs. all principle, which should be taken in considera-
tion when dealing with multiclass data (alternating probabilities do not sum to 1). To avoid this inconvenience,
you can choose to normalize probabilities.

2. Continuous attributes can be plotted in 2D (only for Logistic Regression).
3. Save image.
4. Produce a report.

Example
The Nomogram widget should be used immediately after trained classifier widget (e.g. Naive Bayes. It can also be
passed a data instance using any widget that enables selection (e.g. Data Table) as shown in the workflow below.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Referring to the Titanic data set once again, 1490 (68%) of passengers on Titanic, of 2201 in total, died. To make a
prediction, the contribution of each attribute is measured as a point score and the individual point scores are sum-
med to determine the probability. When the value of the attribute is unknown, its contribution is 0 points. Therefore,
not knowing anything about the passenger, the total point score is 0, and the corresponding probability equals to the
unconditional prior. The nomogram in the example shows the case when we know that the passenger is a male adult
from the first class. The points sum to -0.36, with a corresponding probability of not surviving of about 53%.

Pythagorean Forest

Pythagorean forest for visualising random forests.

Signals
Inputs:

Random Forest

Classification / regression tree models as random forest.

Outputs:

Tree

A selected classification / regression tree model.

Description
Pythagorean Forest shows all learned decision tree models from Random Forest widget. It displays then as Pytha-
gorean trees, each visualization pertaining to one randomly constructed tree. In the visualization, you can select a
tree and display it in Pythagorean Tree wigdet. The best tree is the one with the shortest and most strongly colored
branches. This means few attributes split the branches well.

Widget displays both classification and regression results. Classification requires discrete target variable in the data
set, while regression requires a continuous target variable. Still, they both should be fed a Tree on the input.

1. Information on the input random forest model.

2. Display parameters:

https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/pythagoreantree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html

Depth: set the depth to which the trees are grown.
Target class: set the target class for coloring the trees. If None is selected, tree will be white. If the input
is a classification tree, you can color nodes by their respective class. If the input is a regression tree, the
options are Class mean, which will color tree nodes by the class mean value and Standard deviation,
which will color then by the standard deviation value of the node.
Size: set the size of the nodes. Normal will keep nodes the size of the subset in the node. Square root and
Logarithmic are the respective transformations of the node size.
Zoom: allows you to se the size of the tree visualizations.

3. Save Image: save the visualization to your computer as a .svg or .png file. Report: produce a report.

Example
Pythagorean Forest is great for visualizing several built trees at once. In the example below, we’ve used housing
data set and plotted all 10 trees we’ve grown with Random Forest. When changing the parameters in Random Forest,
visualization in Pythagorean Forest will change as well.

Then we’ve selected a tree in the visualization and inspected it further with Pythagorean Tree widget.

References
Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing
Hierarchies. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and
Applications, 17-28.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/pythagoreantree.html

Pythagorean Tree

Pythagorean tree visualisation for classification or regression trees.

Signals
Inputs:

Tree

A decision tree model.

Selected Data

A subset of instances that the user has manually selected from the Pythagorean tree.

Description
Pythagorean Trees are plane fractals that can be used to depict general tree hierarchies as presented in an article
by Fabian Beck and co-authors. In our case, they are used for visualizing and exploring tree models, such as Tree.

1. Information on the input tree model.

2. Visualization parameters:

Depth: set the depth of displayed trees.
Target class (for classification trees): the intensity of the color for nodes of the tree will correspond to the
probability of the target class. If None is selected, the color of the node will denote the most probable
class.

http://publications.fbeck.com/ivapp14-pythagoras.pdf
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html

Node color (for regression trees): node colors can correspond to mean or standard deviation of class va-
lue of the training data instances in the node.
Size: define a method to compute the size of the square representing the node. Normal will keep node si-
zes correspond to the size of training data subset in the node. Square root and Logarithmic are the re-
spective transformations of the node size.
Log scale factor is only enabled when logarithmic transformation is selected. You can set the log factor
between 1 and 10.

3. Plot properties:

Enable tooltips: display node information upon hovering.
Show legend: shows color legend for the plot.

4. Reporting:
Save Image: save the visualization to a SVG or PNG file.
Report: add visualization to the report.

Pythagorean Tree can visualize both classification and regression trees. Below is an example for regression tree. The
only difference between the two is that regression tree doesn’t enable coloring by class, but can color by class mean or
standard deviation.

Example
The workflow from the screenshot below demonstrates the difference between Tree Viewer and Pythagorean Tree.
They can both visualize Tree, but Pythagorean visualization takes less space and is more compact, even for a small
Iris flower data set. For both visualization widgets, we have hidden the control area on the left by clicking on the
splitter between control and visualization area.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/treeviewer.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://en.wikipedia.org/wiki/Iris_flower_data_set

Pythagorean Tree is interactive: click on any of the nodes (squares) to select training data instances that were asso-
ciated with that node. The following workflow explores these feature.

The selected data instances are shown as a subset in the Scatter Plot, sent to the Data Table and examined in the Box
Plot. We have used brown-selected data set in this example. The tree and scatter plot are shown below; the selected
node in the tree has a black outline.

https://docs.orange.biolab.si/3/visual-programming/_images/Pythagorean-Tree-scatterplot-workflow.png
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/boxplot.html

References
Beck, F., Burch, M., Munz, T., Di Silvestro, L. and Weiskopf, D. (2014). Generalized Pythagoras Trees for Visualizing
Hierarchies. In IVAPP ‘14 Proceedings of the 5th International Conference on Information Visualization Theory and
Applications, 17-28.

http://publications.fbeck.com/ivapp14-pythagoras.pdf

Scatter Map

Plots a scatter map for a pair of continuous attributes.

Signals
Inputs:

Data

An input data set

Outputs:

None

Description
A Scatter map is a graphical method for visualizing frequencies in a two-way matrix by color. The higher the occur-
rence of a certain value, the darker the represented color. By combining two values on x and y axes, we see where the
attribute combination is the strongest and where the weakest, thus enabling the user to find strong correlations or re-
presentative instances.

1. Select the x and y attribute to be plotted.
2. Color the plot by attribute. You can also select which attribute instances you wish to see in the visualization by

clicking on them. At the bottom, you can select the color scale strength (linear, square root or logarithmic).
3. Sampling is enabled only when the widget is connected to the SQL Table widget. You can set the sampling time

https://en.wikipedia.org/wiki/Scatter_plot
https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Logarithm#Logarithmic_scale

for large data to speed up the analysis. Sharpen works for all data types and it will resize (sharpen) the squares in
the plot.

4. Save Image saves the created image to your computer in a .svg or .png format.
5. Produce a report.

Example
Below, you can see an example workflow for the Scatter Map widget. Notice that the widget only works with conti-
nuous data, so you need to first continuize the data attributes you want to visualize. The Scatter map below displays
two attributes from the Iris data set, namely the petal width and petal length. Here, we can see the distribution of
width and length values per Iris type. You can see that the variety Iris setosa is distinctly separated from the other
two varieties by petal width and length and that the most typical values for these attributes are around 0.2 for petal
width and between 1.4 and 1.7 for petal length. This shows that petal width and length are good attributes for telling
Iris setosa apart from the other two varieties.

Scatter Plot

Scatterplot visualization with explorative analysis and intelligent data visualization enhancements.

Signals
Inputs:

Data

An input data set.

Data Subset

A subset of instances from the input data set.

Features

A list of attributes.

Outputs:

Selected Data

A subset of instances that the user manually selected from the scatterplot.

Data

Data with an additional column showing whether a point is selected.

Description
The Scatterplot widget provides a 2-dimensional scatterplot visualization for both continuous and discrete-valued
attributes. The data is displayed as a collection of points, each having the value of the x-axis attribute determining the
position on the horizontal axis and the value of the y-axis attribute determining the position on the vertical axis. Va-
rious properties of the graph, like color, size and shape of the points, axis titles, maximum point size and jittering can
be adjusted on the left side of the widget. A snapshot below shows the scatterplot of the Iris data set with the coloring
matching of the class attribute.

1. Select the x and y attribute. Optimize your projection by using Rank Projections. This feature scores attribute
pairs by average classification accuracy and returns the top scoring pair with a simultaneous visualization update.
Set jittering to prevent the dots overlapping. If Jitter continuous values is ticked, continuous instances will be
dispersed.

2. Set the color of the displayed points (you will get colors for discrete values and grey-scale points for continuous).
Set label, shape and size to differentiate between points. Set symbol size and opacity for all data points. Set the
desired colors scale.

3. Adjust plot properties:

Show legend displays a legend on the right. Click and drag the legend to move it.
Show gridlines displays the grid behind the plot.
Show all data on mouse hover enables information bubbles if the cursor is placed on a dot.
Show class density colors the graph by class (see the screenshot below).
Show regression line draws the regression line for pair of continuous attributes.
Label only selected points allows you to select individual data instances and label them.

4. Select, zoom, pan and zoom to fit are the options for exploring the graph. The manual selection of data instances
works as an angular/square selection tool. Double click to move the projection. Scroll in or out for zoom.

5. If Send automatically is ticked, changes are communicated automatically. Alternatively, press Send.
6. Save Image saves the created image to your computer in a .svg or .png format.
7. Produce a report.

For discrete attributes, jittering circumvents the overlap of points which have the same value for both axes, and the-
refore the density of points in the region corresponds better to the data. As an example, the scatterplot for the Titanic
data set, reporting on the gender of the passengers and the traveling class is shown below; without jittering, the scat-
terplot would display only eight distinct points.

https://en.wikipedia.org/wiki/Jitter

Here is an example of the Scatter Plot widget if the Show class density and Show regression line boxes are ticked.

Intelligent Data Visualization
If a data set has many attributes, it is impossible to manually scan through all the pairs to find interesting or useful
scatterplots. Orange implements intelligent data visualization with the Find Informative Projections option in
the widget. The goal of optimization is to find scatterplot projections where instances are well separated.

To use this method, go to the Find Informative Projections option in the widget, open the subwindow and press Start
Evaluation. The feature will return a list of attribute pairs by average classification accuracy score.

Below, there is an example demonstrating the utility of ranking. The first scatterplot projection was set as the default
sepal width to sepal length plot (we used the Iris data set for simplicity). Upon running Find Informative Projections
optimization, the scatterplot converted to a much better projection of petal width to petal length plot.

Selection
Selection can be used to manually defined subgroups in the data. Use Shift modifier when selecting data instances to
put them into a new group. Shift + Ctrl (or Shift + Cmd on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.

Explorative Data Analysis
The Scatterplot, as the rest of Orange widgets, supports zooming-in and out of part of the plot and a manual selec-
tion of data instances. These functions are available in the lower left corner of the widget. The default tool is Select,
which selects data instances within the chosen rectangular area. Pan enables you to move the scatterplot around the
pane. With Zoom you can zoom in and out of the pane with a mouse scroll, while Reset zoom resets the visualization
to its optimal size. An example of a simple schema, where we selected data instances from a rectangular region and
sent them to the Data Table widget, is shown below. Notice that the scatterplot doesn’t show all 52 data instances, be-
cause some data instances overlap (they have the same values for both attributes used).

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Example
The Scatterplot can be combined with any widget that outputs a list of selected data instances. In the example be-
low, we combine Tree and Scatterplot to display instances taken from a chosen decision tree node (clicking on any
node of the tree will send a set of selected data instances to the scatterplot and mark selected instances with filled
symbols).

https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html

Sieve Diagram

Plots a sieve diagram for a pair of attributes.

Signals
Inputs:

Data

An input data set

Outputs:

None

Description
A Sieve diagram is a graphical method for visualizing frequencies in a two-way contingency table and comparing
them to expected frequencies under assumption of independence. It was proposed by Riedwyl and Schüpbach in a
technical report in 1983 and later called a parquet diagram (Riedwyl and Schüpbach, 1994). In this display, the area
of each rectangle is proportional to the expected frequency, while the observed frequency is shown by the number of
squares in each rectangle. The difference between observed and expected frequency (proportional to the standard
Pearson residual) appears as the density of shading, using color to indicate whether the deviation from independence
is positive (blue) or negative (red).

http://cnx.org/contents/d396c4ad-2fd7-47cd-be84-152b44880feb@2/What-is-an-expected-frequency

1. Select the attributes you want to display in the sieve plot.
2. Score combinations enables you to fin the best possible combination of attributes.
3. Save Image saves the created image to your computer in a .svg or .png format.
4. Produce a report.

The snapshot below shows a sieve diagram for the Titanic data set and has the attributes sex and survived (the latter
is a class attribute in this data set). The plot shows that the two variables are highly associated, as there are substan-
tial differences between observed and expected frequencies in all of the four quadrants. For example, and as hi-
ghlighted in the balloon, the chance for surviving the accident was much higher for female passengers than expected
(0.06 vs. 0.15).

Pairs of attributes with interesting associations have a strong shading, such as the diagram shown in the above snap-
shot. For contrast, a sieve diagram of the least interesting pair (age vs. survival) is shown below.

Example
Below, we see a simple schema using the Titanic data set, where we use the Rank widget to select the best attributes
(the ones with the highest information gain, gain ratio or gini index) and feed them into the Sieve Diagram. This
displays the sieve plot for the two best attributes, which in our case are sex and status. We see that the survival rate
on the Titanic was very high for women of the first class and very low for female crew members.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/rank.html

The Sieve Diagram also features the Score Combinations option, which makes the ranking of attributes even
easier.

References
Riedwyl, H., and Schüpbach, M. (1994). Parquet diagram to plot contingency tables. In Softstat ‘93: Advances in Sta-
tistical Software, F. Faulbaum (Ed.). New York: Gustav Fischer, 293-299.

Silhouette Plot

A graphical representation of consistency within clusters of data.

Signals
Inputs

Data

A data set.

Outputs

Selected Data

A subset of instances that the user has manually selected from the plot.

Other Data

Remaining data.

Description
The Silhouette Plot widget offers a graphical representation of consistency within clusters of data and provides the
user with the means to visually assess cluster quality. The silhouette score is a measure of how similar an object is to
its own cluster in comparison to other clusters and is crucial in the creation of a silhoutte plot. The silhouette score
close to 1 indicates that the data instance is close to the center of the cluster and instances posessing the silhouette
scores close to 0 are on the border between two clusters.

1. Choose the distance metric. You can choose between:

Euclidean (“straight line”, distance between two points)
Manhattan (the sum of absolute differences for all attributes)

2. Select the cluster label. You can decide whether to group the instances by cluster or not.
3. Display options:

Choose bar width.
Annotations: annotate the silhouette plot.

4. Save Image saves the created silhouette plot to your computer in a .png or .svg format.
5. Produce a report.
6. Output:

Add silhouette scores (good clusters have higher silhoutte scores)
By clicking Commit, changes are comminicated to the output of the widget. Alternatively, tick the box on the
left and changes will be communicated automatically.

7. The created silhouette plot.

Example
In the snapshot below, we have decided to use the Silhoutte Plot on the iris data set. We selected data intances with
low silhouette scores and passed them on as a subset to the Scatter Plot widget. This visualization only confirms the

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wiktionary.org/wiki/Manhattan_distance
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

accuracy of the Silhouette Plot widget, as you can clearly see that the subset lies in the border between two clusters.

If you are interested in other uses of the Silhouette Plot widget, feel free to explore our blog post.

http://blog.biolab.si/2016/03/23/all-i-see-is-silhouette/

Tree Viewer

A visualization of classification and regression trees.

Signals
Inputs:

Tree

A decision tree.

Outputs:

Selected Data

Data from a selected tree node.

Data

Data set with an additional attribute for selection labels.

Description
This is a versatile widget with 2-D visualization of classification and regression trees. The user can select a node, in-
structing the widget to output the data associated with the node, thus enabling explorative data analysis.

1. Information on the input.
2. Display options:

Zoom in and zoom out
Select the tree width. The nodes display information bubbles when hovering over them.
Select the depth of your tree.
Select edge width. The edges between the nodes in the tree graph are drawn based on the selected edge width.

All the edges will be of equal width if Fixed is chosen.
When Relative to root is selected, the width of the edge will correspond to the proportion of instances

https://en.wikipedia.org/wiki/Decision_tree_learning
https://docs.orange.biolab.si/3/visual-programming/_images/TreeViewer-stamped.png

in the corresponding node with respect to all the instances in the training data. Under this selection,
the edge will get thinner and thinner when traversing toward the bottom of the tree.
Relative to parent makes the edge width correspond to the proportion of instances in the nodes with
respect to the instances in their parent node.

Define the target class, which you can change based on classes in the data.

3. Press Save image to save the created tree graph to your computer as a .svg or .png file.
4. Produce a report.

Examples
Below, is a simple classification schema, where we have read the data, constructed the decision tree and viewed it in
our Tree Viewer. If both the viewer and Tree are open, any re-run of the tree induction algorithm will immediately
affect the visualization. You can thus use this combination to explore how the parameters of the induction algorithm
influence the structure of the resulting tree.

Clicking on any node will output the related data instances. This is explored in the schema below that shows the sub-
set in the data table and in the Scatterplot. Make sure that the tree data is passed as a data subset; this can be done by
connecting the Scatterplot to the File widget first, and connecting it to the Tree Viewer widget next. Selected data
will be displayed as bold dots.

Tree Viewer can also export labelled data. Connect Data Table to Tree Viewer and set the link between widgets to
Data instead of Selected Data. This will send the entire data to Data Table with an additional meta column labelling
selected data instances (Yes for selected and No for the remaining).

https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Finally, Tree Viewer can be used also for visualizing regression trees. Connect Random Forest to File widget using
housing.tab data set. Then connect Pythagorean Forest to Random Forest. In Pythagorean Forest select a re-
gression tree you wish to further analyze and pass it to the Tree Viewer. The widget will display the constructed
tree. For visualizing larger trees, especially for regression, Pythagorean Tree could be a better option.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/pythagoreanforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/pythagoreantree.html

Venn Diagram

Plots a Venn diagram for two or more data subsets.

Signals
Inputs:

Data

An input data set

Outputs:

Selected Data

A subset of instances that the user has manually selected from the diagram.

Description
The Venn Diagram widget displays logical relations between data sets. This projection shows two or more data sets
represented by circles of different colors. The intersections are subsets that belong to more than one data set. To fur-
ther analyze or visualize the subset, click on the intersection.

http://en.wikipedia.org/wiki/Venn_diagram

1. Information on the input data.
2. Select the identifiers by which to compare the data.
3. Tick Output duplicates if you wish to remove duplicates.
4. If Auto commit is on, changes are automatically communicated to other widgets. Alternatively, click Commit.
5. Save Image saves the created image to your computer in a .svg or .png format.
6. Produce a report.

Examples
The easiest way to use the Venn Diagram is to select data subsets and find matching instances in the visualization.
We use the breast-cancer data set to select two subsets with Select Rows widget - the first subset is that of breast can-
cer patients aged between 40 and 49 and the second is that of patients with a tumor size between 20 and 29. The
Venn Diagram helps us find instances that correspond to both criteria, which can be found in the intersection of
the two circles.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectrows.html

The Venn Diagram widget can be also used for exploring different prediction models. In the following example, we
analysed 3 prediction methods, namely Naive Bayes, SVM and Random Forest, according to their misclassified in-
stances. By selecting misclassifications in the three Confusion Matrix widgets and sending them to Venn diagram, we
can see all the misclassification instances visualized per method used. Then we open Venn Diagram and select, for
example, the misclassified instances that were identified by all three methods (in our case 2). This is represented as
an intersection of all three circles. Click on the intersection to see this two instances marked in the Scatterplot widget.
Try selecting different diagram sections to see how the scatterplot visualization changes.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/svm.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

AdaBoost

An ensemble meta-algorithm that combines weak learners and adapts to the ‘hardness’ of each training sample.

Signals
Inputs:

Data

A data set.

Preprocessor

Preprocessing method(s)

Learner

A learning algorithm.

Outputs:

Learner

AdaBoost learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Description
The AdaBoost (short for “Adaptive boosting”) widget is a machine-learning algorithm, formulated by Yoav Freund
and Robert Schapire. It can be used with other learning algorithms to boost their performance. It does so by tweaking
the weak learners.

AdaBoost works for both classification and regression.

https://en.wikipedia.org/wiki/AdaBoost
https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf

1. The learner can be given a name under which it will appear in other widgets. The default name is “AdaBoost”.
2. Set the parameters. The base estimator is a tree and you can set:

Number of estimators
Learning rate: it determines to what extent the newly acquired information will override the old information
(0 = the agent will not learn anything, 1 = the agent considers only the most recent information)
Fixed seed for random generator: set a fixed seed to enable reproducing the results.

3. Boosting method.

Classification algorithm (if classification on input): SAMME (updates base estimator’s weights with classifi-
cation results) or SAMME.R (updates base estimator’s weight with probability estimates).
Regression loss function (if regression on input): Linear (), Square (), Exponential ().

4. Produce a report.
5. Click Apply after changing the settings. That will put the new learner in the output and, if the training examples

are given, construct a new model and output it as well. To communicate changes automatically tick Apply Auto-
matically.

Examples
For classification, we loaded the iris data set. We used AdaBoost, Tree and Logistic Regression and evaluated the mo-
dels’ performance in Test & Score.

https://docs.orange.biolab.si/3/visual-programming/_images/AdaBoost-stamped.png
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/logisticregression.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html

For regression, we loaded the housing data set, sent the data instances to two different models (AdaBoost and Tree)
and output them to the Predictions widget.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

CN2 Rule Induction

Induce rules from data using CN2 algorithm.

Signals
Inputs

Data

Data set.

Preprocessor

Preprocessing method(s)

Outputs

Learner

The CN2 learning algorithm with settings as specified in the dialog.

CN2 Rule Classifier

A trained model. Output signal sent only if input Data is present.

Description
The CN2 algorithm is a classification technique designed for the efficient induction of simple, comprehensible rules
of form “if cond then predict class”, even in domains where noise may be present.

CN2 Rule Induction works only for classification.

1. Name under which the learner appears in other widgets. The default name is CN2 Rule Induction.
2. Rule ordering:

Ordered: induce ordered rules (decision list). Rule conditions are found and the majority class is assigned
in the rule head.
Unordered: induce unordered rules (rule set). Learn rules for each class individually, in regard to the origi-
nal learning data.

3. Covering algorithm:

Exclusive: after covering a learning instance, remove it from further consideration.
Weighted: after covering a learning instance, decrease its weight (multiplication by gamma) and in-turn
decrease its impact on further iterations of the algorithm.

4. Rule search:

Evaluation measure: select a heuristic to evaluate found hypotheses:

a. Entropy (measure of unpredictability of content)
b. Laplace Accuracy
c. Weighted Relative Accuracy

Beam width; remember the best rule found thus far and monitor a fixed number of alternatives (the beam).

5. Rule filtering:

Minimum rule coverage: found rules must cover at least the minimum required number of covered exam-
ples. Unordered rules must cover this many target class examples.
Maximum rule length: found rules may combine at most the maximum allowed number of selectors
(conditions).
Default alpha: significance testing to prune out most specialised (less frequently applicable) rules in regard
to the initial distribution of classes.
Parent alpha: significance testing to prune out most specialised (less frequently applicable) rules in regard
to the parent class distribution.

6. Tick ‘Apply Automatically’ to auto-communicate changes to other widgets and to immediately train the classifier
if learning data is connected. Alternatively, press ‘Apply‘ after configuration.

https://docs.orange.biolab.si/3/visual-programming/_images/CN2-stamped.png
https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Laplace%27s_method

Examples
For the example below, we have used zoo data set and passed it to CN2 Rule Induction. We can review and inter-
pret the built model with CN2 Rule Viewer widget.

The second workflow tests evaluates CN2 Rule Induction and Tree in Test & Score.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/cn2ruleviewer.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html

References
1. “Separate-and-Conquer Rule Learning”, Johannes Fürnkranz, Artificial Intelligence Review 13, 3-54, 1999
2. “The CN2 Induction Algorithm”, Peter Clark and Tim Niblett, Machine Learning Journal, 3 (4), pp261-283,

(1989)
3. “Rule Induction with CN2: Some Recent Improvements”, Peter Clark and Robin Boswell, Machine Learning -

Proceedings of the 5th European Conference (EWSL-91), pp151-163, 1991
4. “Subgroup Discovery with CN2-SD”, Nada Lavrač et al., Journal of Machine Learning Research 5 (2004), 153-

188, 2004

Constant

Predict the most frequent class or mean value from the training set.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A majority/mean learning algorithm

Model

A trained model. Output signal sent only if input Data is present.

Description
This learner produces a model that always predicts the majority for classification tasks and mean value for regression
tasks.

For classification, when predicting the class value with Predictions, the widget will return relative frequencies of the
classes in the training set. When there are two or more majority classes, the classifier chooses the predicted class ran-
domly, but always returns the same class for a particular example.

For regression, it learns the mean of the class variable and returns a predictor with the same mean value.

The widget is typically used as a baseline for other models.

This widget provides the user with two options:

1. The name under which it will appear in other widgets. Default name is “Constant”.
2. Produce a report.

If you change the widget’s name, you need to click Apply. Alternatively, tick the box on the left side and changes will
be communicated automatically.

https://en.wikipedia.org/wiki/Predictive_modelling#Majority_classifier
https://en.wikipedia.org/wiki/Mean
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html
https://docs.orange.biolab.si/3/visual-programming/_images/Constant-stamped.png

Examples
In a typical classification example, we would use this widget to compare the scores of other learning algorithms (such
as kNN) with the default scores. Use iris data set and connect it to Test & Score. Then connect Constant and kNN to
Test & Score and observe how well kNN performs against a constant baseline.

For regression, we use Constant to construct a predictor in Predictions. We used the housing data set. In Predic-
tions, you can see that Mean Learner returns one (mean) value for all instances.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/knn.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/knn.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

kNN

Predict according to the nearest training instances.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A kNN learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Description
The kNN widget uses the kNN algorithm that searches for k closest training examples in feature space and uses their
average as prediction.

1. A name under which it will appear in other widgets. The default name is “kNN”.

2. Set the number of nearest neighbors, the distance parameter (metric) and weights as model criteria. Metric can
be:

Euclidean (“straight line”, distance between two points)
Manhattan (sum of absolute differences of all attributes)
Maximal (greatest of absolute differences between attributes)
Mahalanobis (distance between point and distribution).

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://docs.orange.biolab.si/3/visual-programming/_images/kNN-stamped.png
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Chebyshev_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance

The Weights you can use are:

Uniform: all points in each neighborhood are weighted equally.
Distance: closer neighbors of a query point have a greater influence than the neighbors further away.

3. Produce a report.

4. When you change one or more settings, you need to click Apply, which will put a new learner on the output and,
if the training examples are given, construct a new model and output it as well. Changes can also be applied auto-
matically by clicking the box on the left side of the Apply button.

Examples
The first example is a classification task on iris data set. We compare the results of k-Nearest neighbors with the de-
fault model Constant, which always predicts the majority class.

The second example is a regression task. This workflow shows how to use the Learner output. For the purpose of this
example, we used the housing data set. We input the kNN prediction model into Predictions and observe the predic-
ted values.

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://docs.orange.biolab.si/3/visual-programming/widgets/model/constant.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

Linear Regression

A linear regression algorithm with optional L1 (LASSO), L2 (ridge) or L1L2 (elastic net) regularization.

Signals
Inputs:

Data

A data set

Preprocessor

A preprocessed data set.

Outputs:

Learner

A linear regression learning algorithm with settings as specified in the dialog.

Predictor

A trained regressor. Output signal sent only if input Data is present.

Description
The Linear Regression widget constructs a learner/predictor that learns a linear function from its input data. The
model can identify the relationship between a predictor xi and the response variable y. Additionally, Lasso and Ridge
regularization parameters can be specified. Lasso regression minimizes a penalized version of the least squares loss
function with L1-norm penalty and Ridge regularization with L2-norm penalty.

Linear regreesion works only on regression tasks.

1. The learner/predictor name
2. Choose a model to train:

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://docs.orange.biolab.si/3/visual-programming/_images/LinearRegression-stamped.png

no regularization
a Ridge regularization (L2-norm penalty)
a Lasso bound (L1-norm penalty)
an Elastic net regularization

3. Produce a report.
4. Press Apply to commit changes. If Apply Automatically is ticked, changes are committed automatically.

Example
Below, is a simple workflow with housing data set. We trained Linear Regression and Random Forest and evalua-
ted their performance in Test&Score.

https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Elastic_net_regularization
https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html

Load Model

Load a model from an input file.

Signals
Inputs:

None

Outputs:

Model

A model with selected parameters.

Description

1. Choose from a list of previously used models.
2. Browse for saved models.
3. Reload the selected model.

Example
When you want to use a custom-set model that you’ve saved before, open the Load Model widget and select the de-
sired file with the Browse icon. This widget loads the exisiting model into Predictions widget. Data sets used with
Load Model have to contain compatible attributes!

https://docs.orange.biolab.si/3/visual-programming/_images/LoadModel-stamped.png
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

Logistic Regression

The logistic regression classification algorithm with LASSO (L1) or ridge (L2) regularization.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A logistic regression learning algorithm with settings as specified in the dialog.

Logistic Regression Classifier

A trained classifier. Output signal sent only if input Data is present.

Description
Logistic Regression learns a Logistic Regression model from the data.

It only works for classification tasks.

1. A name under which the learner appears in other widgets. The default name is “Logistic Regression”.
2. Regularization type (either L1 or L2). Set the cost strength (default is C=1).
3. Press Apply to commit changes. If Apply Automatically is ticked, changes will be communicated automatically.

Example
The widget is used just as any other widget for inducing a classifier. This is an example demonstrating prediction re-
sults with logistic regression on the hayes-roth data set. We first load hayes-roth_learn in the File widget and pass

https://en.wikipedia.org/wiki/Logistic_regression
https://docs.orange.biolab.si/3/visual-programming/_images/LogisticRegression-stamped.png
https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Least_squares#Lasso_method
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

the data to Logistic Regression. Then we pass the trained model to Predictions.

Now we want to predict class value on a new data set. We load hayes-roth_test in the second File widget and connect
it to Predictions. We can now observe class values predicted with Logistic Regression directly in Predictions.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

Naive Bayes

A fast and simple probabilistic classifier based on Bayes’ theorem with the assumption of feature independence.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A naive bayes learning algorithm with settings as specified in the dialog.

Model

A trained classifier. Output signal sent only if input Data is present.

Description
Naive Bayes learns a Naive Bayesian model from the data.

It only works for classification tasks.

This widget has two options: the name under which it will appear in other widgets and producing a report. The de-
fault name is Naive Bayes. When you change it, you need to press Apply.

Examples
Here, we present two uses of this widget. First, we compare the results of the Naive Bayes with another model, the
Random Forest. We connect iris data from File to Test&Score. We also connect Naive Bayes and Random Forest to
Test & Score and observe their prediction scores.

https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://docs.orange.biolab.si/3/visual-programming/_images/NaiveBayes-stamped.png
https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html

The second schema shows the quality of predictions made with Naive Bayes. We feed the Test&Score widget a Nai-
ve Bayes learner and then send the data to the Confusion Matrix. We also connect Scatterplot with File. Then we se-
lect the misclassified instances in the Confusion Matrix and show feed them to Scatterplot. The bold dots in the
scatterplot are the misclassified instances from Naive Bayes.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Neural Network

A multi-layer perceptron (MLP) algorithm with backpropagation.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A MLP learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Description
The Neural Network widget uses sklearn’s Multi-layer Perceptron algorithm that can learn non-linear models as
well as linear.

http://scikit-learn.org/stable/modules/neural_networks_supervised.html

1. A name under which it will appear in other widgets. The default name is “Neural Network”.

2. Set model parameters: - Neurons per hidden layer: defined as the ith element represents the number of neurons
in the ith hidden layer. E.g. a neural network with 3 layers can be defined as 2, 3, 2. - Activation function for the
hidden layer:

Identity: no-op activation, useful to implement linear bottleneck
Logistic: the logistic sigmoid function
tanh: the hyperbolic tan function
ReLu: the rectified linear unit function

Solver for weight optimization: - L-BFGS-B: an optimizer in the family of quasi-Newton methods - SGD: sto-
chastic gradient descent - Adam: stochastic gradient-based optimizer
Alpha: L2 penalty (regularization term) parameter
Max iterations: maximum number of iterations

Other parameters are set to sklearn’s defaults.

3. Produce a report.

4. When the box is ticked (Apply Automatically), the widget will communicate changes automatically. Alternative-
ly, click Apply.

Examples

http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

The first example is a classification task on iris data set. We compare the results of Neural Network with the Logi-
stic Regression.

The second example is a prediction task, still using the iris data. This workflow shows how to use the Learner output.
We input the Neural Network prediction model into Predictions and observe the predicted values.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/logisticregression.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

Random Forest

Predict using an ensemble of decision trees.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A random forest learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Description
Random forest is an ensemble learning method used for classification, regression and other tasks. It was first propo-
sed by Tin Kam Ho and further developed by Leo Breiman (Breiman, 2001) and Adele Cutler.

Random Forest builds a set of decision trees. Each tree is developed from a bootstrap sample from the training
data. When developing individual trees, an arbitrary subset of attributes is drawn (hence the term “Random”), from
which the best attribute for the split is selected. The final model is based on the majority vote from individually deve-
loped trees in the forest.

Random Forest works for both classification and regression tasks.

https://en.wikipedia.org/wiki/Random_forest

1. Specify the name of the model. The default name is “Random Forest”.
2. Specify how many decision trees will be included in the forest (Number of trees in the forest), and how many at-

tributes will be arbitrarily drawn for consideration at each node. If the latter is not specified (option Number of
attributes… left unchecked), this number is equal to the square root of the number of attributes in the data. You
can also choose to fix the seed for tree generation (Fixed seed for random generator), which enables replicability
of the results.

3. Original Brieman’s proposal is to grow the trees without any pre-prunning, but since pre-pruning often works
quite well and is faster, the user can set the depth to which the trees will be grown (Limit depth of individual
trees). Another pre-pruning option is to select the smallest subset that can be split (Do not split subsets smaller
than).

4. Produce a report.
5. Click Apply to communicate the changes to other widgets. Alternatively, tick the box on the left side of the Apply

button and changes will be communicated automatically.

Examples
For classification tasks, we use iris data set. Connect it to Predictions. Then, connect File to Random Forest and
Tree and connect them further to Predictions. Finally, observe the predictions for the two models.

https://docs.orange.biolab.si/3/visual-programming/_images/RandomForest-stamped.png
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

For regressions tasks, we will use housing data. Here, we will compare different models, namely Random Forest,
Linear Regression and Constant, in the Test&Score widget.

References
Breiman, L. (2001). Random Forests. In Machine Learning, 45(1), 5-32. Available here

https://docs.orange.biolab.si/3/visual-programming/widgets/model/linearregression.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/constant.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
http://download.springer.com/static/pdf/639/art%253A10.1023%252FA%253A1010933404324.pdf?originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1023%2FA%3A1010933404324&token2=exp=1434636672~acl=%2Fstatic%2Fpdf%2F639%2Fart%25253A10.1023%25252FA%25253A1010933404324.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.1023%252FA%253A1010933404324*~hmac=93fc12faf46899d3cca65e325a946afa897da2a05495736982e04585f9ee6ff3

Save Model

Save a trained model to an output file.

Signals
Inputs:

Model

A model with selected parameters

Outputs:

None

Description

1. Choose from previously saved models.
2. Save the created model with the Browse icon. Click on the icon and enter the name of the file. The model will be

saved to a pickled file.

3. Save the model.

https://docs.orange.biolab.si/3/visual-programming/_images/SaveModel-stamped.png

Example
When you want to save a custom-set model, feed the data to the model (e.g. Logistic Regression) and connect it to
Save Model. Name the model; load it later into workflows with Load Model. Data sets used with Load Model have
to contain compatible attributes.

https://docs.orange.biolab.si/3/visual-programming/widgets/model/logisticregression.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/loadmodel.html

Stochastic Gradient Descent

Minimize an objective function using a stochastic approximation of gradient descent.

Signals
Inputs:

Data

A data set.

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A SGD learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Description
The Stochastic Gradient Descent widget uses stochastic gradient descent that minimizes a chosen loss function
with a linear function. The algorithm approximates a true gradient by considering one sample at a time, and simulta-
neously updates the model based on the gradient of the loss function. For regression, it returns predictors as minimi-
zers of the sum, i.e. M-estimators, and is especially useful for large-scale and sparse data sets.

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

1. Specify the name of the model. The default name is “SGD”.

2. Algorithm parameters. Classification loss function:

Hinge (linear SVM)
Logistic Regression (logistic regression SGD)
Modified Huber (smooth loss that brings tolerance to outliers as well as probability estimates)
Squared Hinge (quadratically penalized hinge)
Perceptron (linear loss used by the perceptron algorithm)
Squared Loss (fitted to ordinary least-squares)
Huber (switches to linear loss beyond ε)
Epsilon insensitive (ignores errors within ε, linear beyond it)
Squared epsilon insensitive (loss is squared beyond ε-region).

Regression loss function:

Squared Loss (fitted to ordinary least-squares)
Huber (switches to linear loss beyond ε)
Epsilon insensitive (ignores errors within ε, linear beyond it)
Squared epsilon insensitive (loss is squared beyond ε-region).

3. Regularization norms to prevent overfitting:

None.
Lasso (L1) (L1, leading to sparse solutions)
Ridge (L2) (L2, standard regularizer)
Elastic net (mixing both penalty norms).

Regularization strength defines how much regularization will be applied (the less we regularize, the more we al-

https://docs.orange.biolab.si/3/visual-programming/_images/StochasticGradientDescent-stamped.png
https://en.wikipedia.org/wiki/Hinge_loss
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://en.wikipedia.org/wiki/Huber_loss
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron
https://en.wikipedia.org/wiki/Mean_squared_error#Regression
https://en.wikipedia.org/wiki/Huber_loss
http://kernelsvm.tripod.com/
https://en.wikipedia.org/wiki/Mean_squared_error#Regression
https://en.wikipedia.org/wiki/Huber_loss
http://kernelsvm.tripod.com/
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
https://en.wikipedia.org/wiki/Elastic_net_regularization

low the model to fit the data) and the mixing parameter what the ratio between L1 and L2 loss will be (if set to 0
then the loss is L2, if set to 1 then it is L1).

4. Learning parameters.

Learning rate:

Constant: learning rate stays the same through all epochs (passes)
Optimal: a heuristic proposed by Leon Bottou
Inverse scaling: earning rate is inversely related to the number of iterations

Initial learning rate.

Inverse scaling exponent: learning rate decay.

Number of iterations: the number of passes through the training data.

If Shuffle data after each iteration is on, the order of data instances is mixed after each pass.

If Fixed seed for random shuffling is on, the algorithm will use a fixed random seed and enable replicating
the results.

7. Produce a report.
8. Press Apply to commit changes. Alternatively, tick the box on the left side of the Apply button and changes will

be communicated automatically.

Examples
For the classification task, we will use iris data set and test two models on it. We connected Stochastic Gradient De-
scent and Tree to Test & Score. We also connected File to Test & Score and observed model performance in the
widget.

http://leon.bottou.org/projects/sgd
http://users.ics.aalto.fi/jhollmen/dippa/node22.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/stochasticgradient.html#
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

For the regression task, we will compare three different models to see which predict what kind of results. For the pur-
pose of this example, the housing data set is used. We connect the File widget to Stochastic Gradient Descent,
Linear Regression and kNN widget and all four to the Predictions widget.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/linearregression.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/knn.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html

SVM

Support Vector Machines map inputs to higher-dimensional feature spaces.

Signals
Inputs:

Data

A data set.

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A support vector machine learning algorithm with settings as specified in the dialog.

Model

A trained model. Output signal sent only if input Data is present.

Support Vectors

A subset of data instances from the training set that were used as support vectors in the trained model.

Description
Support vector machine (SVM) is a machine learning technique that separates the attribute space with a hyperplane,
thus maximizing the margin between the instances of different classes or class values. The technique often yields su-
preme predictive performance results. Orange embeds a popular implementation of SVM from the LIBSVM package.
This widget is its graphical user interface.

For regression tasks, SVM performs linear regression in a high dimension feature space using an ε-insensitive loss.
Its estimation accuracy depends on a good setting of C, ε and kernel parameters. The widget outputs class predictions
based on a SVM Regression.

The widget works for both classification and regression tasks.

https://en.wikipedia.org/wiki/Support_vector_machine
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://en.wikipedia.org/wiki/Support_vector_machine#Regression

1. The learner can be given a name under which it will appear in other widgets. The default name is “SVM”.

2. SVM type with test error settings. SVM and ν-SVM are based on different minimization of the error function. On
the right side, you can set test error bounds:

SVM:

Cost: penalty term for loss and applies for classification and regression tasks.
ε: a parameter to the epsilon-SVR model, applies to regression tasks. Defines the distance from true
values within which no penalty is associated with predicted values.

ν-SVM:

Cost: penalty term for loss and applies only to regression tasks
ν: a parameter to the ν-SVR model, applies to classification and regression tasks. An upper bound on
the fraction of training errors and a lower bound of the fraction of support vectors.

3. Kernel is a function that transforms attribute space to a new feature space to fit the maximum-margin hyperpla-
ne, thus allowing the algorithm to create the model with:

Linear
Polynomial
RBF and
Sigmoid

kernels. Functions that specify the kernel are presented upon selecting them, and the constants involved are:

g for the gamma constant in kernel function (the recommended value is 1/k, where k is the number of the at-
tributes, but since there may be no training set given to the widget the default is 0 and the user has to set this
option manually),
c for the constant c0 in the kernel function (default 0), and
d for the degree of the kernel (default 3).

4. Set permitted deviation from the expected value in Numerical Tolerance. Tick the box next to Iteration Limit to
set the maximum number of iterations permitted.

https://docs.orange.biolab.si/3/visual-programming/_images/SVM-stamped.png
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
http://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-machine
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR
http://www.quora.com/What-are-C-and-gamma-with-regards-to-a-support-vector-machine
https://en.wikipedia.org/wiki/Linear_model
https://en.wikipedia.org/wiki/Polynomial_kernel
https://en.wikipedia.org/wiki/Radial_basis_function_kernel
http://crsouza.com/2010/03/kernel-functions-for-machine-learning-applications/#sigmoid

5. Produce a report.

6. Click Apply to commit changes. If you tick the box on the left side of the Apply button, changes will be communi-
cated automatically.

Examples
In the first (regression) example, we have used housing data set and split the data into two data subsets (Data Sam-
ple and Remaining Data) with Data Sampler. The sample was sent to SVM which produced a Model, which was then
used in Predictions to predict the values in Remaining Data. A similar schema can be used if the data is already in
two separate files; in this case, two File widgets would be used instead of the File - Data Sampler combination.

The second example shows how to use SVM in combination with Scatterplot. The following workflow trains a SVM
model on iris data and outputs support vectors, which are those data instances that were used as support vectors in
the learning phase. We can observe which are these data instances in a scatter plot visualization. Note that for the
workflow to work correctly, you must set the links between widgets as demonstrated in the screenshot below.

References
Introduction to SVM on StatSoft.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datasampler.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/predictions.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datasampler.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
http://www.statsoft.com/Textbook/Support-Vector-Machines

Tree

A tree algorithm with forward pruning.

Signals
Inputs:

Data

A data set

Preprocessor

Preprocessing method(s)

Outputs:

Learner

A decision tree learning algorithm with settings as specified in the dialog.

Model

A subset of data instances from the training set that were used as support vectors in the trained model.

Description
Tree is a simple algorithm that splits the data into nodes by class purity. It is a precursor to Random Forest. Tree in
Orange is designed in-house and can handle both discrete and continuous data sets.

It can also be used for both classification and regression tasks.

1. The learner can be given a name under which it will appear in other widgets. The default name is “Tree”.
2. Tree parameters: - Induce binary tree: build a binary tree (split into two child nodes) - Min. number of in-

stances in leaves: if checked, the algorithm will never construct a split which would put less than the specified

https://docs.orange.biolab.si/3/visual-programming/widgets/model/randomforest.html
https://docs.orange.biolab.si/3/visual-programming/_images/Tree-stamped.png

number of training examples into any of the branches. - Do not split subsets smaller than: forbids the algo-
rithm to split the nodes with less than the given number of instances. - Limit the maximal tree depth: limits
the depth of the classification tree to the specified number of node levels.

3. Stop when majority reaches [%]: stop splitting the nodes after a specified majority threshold is reached
4. Produce a report. After changing the settings, you need to click Apply, which will put the new learner on the out-

put and, if the training examples are given, construct a new classifier and output it as well. Alternatively, tick the
box on the left and changes will be communicated automatically.

Examples
There are two typical uses for this widget. First, you may want to induce a model and check what it looks like in Tree
Viewer.

The second schema trains a model and evaluates its performance against Logistic Regression.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/treeviewer.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/logisticregression.html

We used the iris data set in both examples. However, Tree works for regression tasks as well. Use housing data set
and pass it to Tree. The selected tree node from Tree Viewer is presented in the Scatter Plot and we can see that the
selected examples exhibit the same features.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/treeviewer.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Correspondence Analysis

Signals
Inputs:

Data

A data set.

Outputs:

None

Description
Correspondence Analysis (CA) computes the CA linear transformation of the input data. While it is similar to PCA,
CA computes linear transformation on discrete rather than on continuous data.

1. Select the variables you want to see plotted.
2. Select the component for each axis.
3. Inertia values (percentage of independence from transformation, i.e. variables are in the same dimension).
4. Produce a report.

https://en.wikipedia.org/wiki/Correspondence_analysis
https://en.wikipedia.org/wiki/Sylvester%27s_law_of_inertia

Example
Below, is a simple comparison between the Correspondence Analysis and Scatter plot widgets on the Titanic data
set. While the Scatter plot shows fairly well which class and sex had a good survival rate and which one didn’t, Cor-
respondence Analysis can plot several variables in a 2-D graph, thus making it easy to see the relations between
variable values. It is clear from the graph that “no”, “male” and “crew” are related to each other. The same goes for
“yes”, “female” and “first”.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

Distance File

Loads an existing distance file.

Signals
Inputs:

None

Outputs:

Distance File

A distance matrix.

Description

1. Choose from a list of previously saved distance files.
2. Browse for saved distance files.
3. Reload the selected distance file.
4. Information about the distance file (number of points, labelled/unlabelled)
5. Browse documentation data sets.
6. Produce a report.

Example
When you want to use a custom-set distance file that you’ve saved before, open the Distance File widget and select
the desired file with the Browse icon. This widget loads the existing distance file. In the snapshot below, we loaded
the transformed Iris distance matrix from the Save Distance Matrix example. We displayed the transformed data ma-
trix in the Distance Map widget. We also decided to display a distance map of the original Iris data set for
comparison.

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/savedistancematrix.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancemap.html

Distance Map

Visualizes distances between items.

Signals
Inputs:

Distances

A distance matrix.

Outputs:

Data

Instances corresponding to the selected elements of the matrix.

Features

Attributes corresponding to the selected elements of the matrix.

Description
The Distance Map visualizes distances between objects. The visualization is the same as if we printed out a table of
numbers, except that the numbers are replaced by colored spots.

Distances are most often those between instances (“rows” in the Distances widget) or attributes (“columns” in Di-
stances widget). The only suitable input for Distance Map is the Distances widget. For the output, the user can se-
lect a region of the map and the widget will output the corresponding instances or attributes. Also note that the Di-
stances widget ignores discrete values and calculates distances only for continuous data, thus it can only display di-
stance map for discrete data if you Continuize them first.

The snapshot shows distances between columns in the heart disease data, where smaller distances are represented
with light and larger with dark orange. The matrix is symmetric and the diagonal is a light shade of orange - no attri-
bute is different from itself. Symmetricity is always assumed, while the diagonal may also be non-zero.

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/continuize.html

1. Element sorting arranges elements in the map by

None (lists instances as found in the data set)
Clustering (clusters data by similarity)
Clustering with ordered leaves (maximizes the sum of similarities of adjacent elements)

2. Colors

Colors (select the color palette for your distance map)
Low and High are thresholds for the color palette (low for instances or attributes with low distances and
high for instances or attributes with high distances).

3. Select Annotations.
4. If Send Selected Automatically is on, the data subset is communicated automatically, otherwise you need to press

Send Selected.
5. Press Save Image if you want to save the created image to your computer.
6. Produce a report.

Normally, a color palette is used to visualize the entire range of distances appearing in the matrix. This can be chan-
ged by setting the low and high threshold. In this way we ignore the differences in distances outside this interval and
visualize the interesting part of the distribution.

Below, we visualized the most correlated attributes (distances by columns) in the heart disease data set by setting the
color threshold for high distances to the minimum. We get a predominantly black square, where attributes with the
lowest distance scores are represented by a lighter shade of the selected color schema (in our case: orange). Beside
the diagonal line, we see that in our example ST by exercise and major vessels colored are the two attributes closest
together.

The user can select a region in the map with the usual click-and-drag of the cursor. When a part of the map is selec-
ted, the widget outputs all items from the selected cells.

Examples
The first workflow shows a very standard use of the Distance Map widget. We select 70% of the original Iris data as
our sample and view the distances between rows in Distance Map.

In the second example, we use the heart disease data again and select a subset of women only from the Scatter Plot.
Then, we visualize distances between columns in the Distance Map. Since the subset also contains some discrete
data, the Distances widget warns us it will ignore the discrete features, thus we will see only continuous instances/at-
tributes in the map.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html

Distance Matrix

Visualizes distance measures in a distance matrix.

Signals
Inputs:

Distances

A distance matrix.

Outputs:

Distances

A distance matrix.

Table

Distance measures in a distance matrix.

Description
The Distance Matrix widget creates a distance matrix, which is a two-dimensional array containing the distances,
taken pairwise, between the elements of a set. The number of elements in the data set defines the size of the matrix.
Data matrices are essential for hierarchical clustering and they are extremely useful in bioinformatics as well, where
they are used to represent protein structures in a coordinate-independent manner.

1. Elements in the data set and the distances between them
2. Label the table. The options are: none, enumeration, according to variables.
3. Produce a report.
4. Click Send to communicate changes to other widgets. Alternatively, tick the box in front of the Send button and

changes will be communicated automatically (Send Automatically).

The only two suitable inputs for Distance Matrix are the Distances widget and the Distance Transformation wid-
get. The output of the widget is a data table containing the distance matrix. The user can decide how to label the table
and the distance matrix (or instances in the distance matrix) can then be visualized or displayed in a separate data
table.

Example
The example below displays a very standard use of the Distance Matrix widget. We compute the distances between
rows in the sample from the Iris data set and output them in the Distance Matrix. It comes as no surprise that Iris
Virginica and Iris Setosa are the furthest apart.

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancetransformation.html

Distance Transformation

Transforms distances in a data set.

Signals
Inputs:

Distances

A distance matrix

Outputs:

Distances

A distance matrix

Description
The Distances Transformation widget is used for the normalization and inversion of distance matrices. The nor-
malization of data is necessary to bring all the variables into proportion with one another.

1. Choose the type of Normalization:

No normalization
To interval [0, 1]
To interval [-1, 1]
Sigmoid function: 1/(1+exp(-X))

2. Choose the type of Inversion:

No inversion
-X
1 - X
max(X) - X

https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Sigmoid_function

1/X

3. Produce a report.
4. After changing the settings, you need to click Apply to commit changes to other widgets. Alternatively, tick Apply
automatically.

Example
In the snapshot below, you can see how transformation affects the distance matrix. We loaded the Iris data set and
calculated the distances between rows with the help of the Distances widget. In order to demonstrate how Distance
Transformation affects the Distance Matrix, we created the worflow below and compared the transformed distance
matrix with the “original” one.

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancematrix.html

Distances

Computes distances between rows/columns in a data set.

Signals
Inputs:

Data

A data set

Outputs:

Distances

A distance matrix

Description
The Distances widget computes distances between rows or columns in a data set.

1. Choose whether to measure distances between rows or columns.

2. Choose the Distance Metric:

Euclidean (“straight line”, distance between two points)
Manhattan (the sum of absolute differences for all attributes)
Cosine (the cosine of the angle between two vectors of an inner product space)
Jaccard (the size of the intersection divided by the size of the union of the sample sets)
Spearman (linear correlation between the rank of the values, remapped as a distance in a [0, 1] interval)
Spearman absolute (linear correlation between the rank of the absolute values, remapped as a distance in a
[0, 1] interval)
Pearson (linear correlation between the values, remapped as a distance in a [0, 1] interval)
Pearson absolute (linear correlation between the absolute values, remapped as a distance in a [0, 1] interval)

In case of missing values, the widget automatically imputes the average value of the row or the column.

Since the widget cannot compute distances between discrete and continuous attributes, it only uses continuous
attributes and ignores the discrete ones. If you want to use discrete attributes, continuize them with the Continui-
ze widget first.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wiktionary.org/wiki/Manhattan_distance
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://docs.orange.biolab.si/3/visual-programming/widgets/data/continuize.html

3. Produce a report.

4. Tick Apply Automatically to automatically commit changes to other widgets. Alternatively, press ‘Apply’.

Example
This widget needs to be connected to another widget to display results, for instance to Distance Map to visualize di-
stances, Hierarchical Clustering to cluster the attributes, or MDS to visualize the distances in a plane.

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancemap.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/hierarchicalclustering.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/mds.html

Hierarchical Clustering

Groups items using a hierarchical clustering algorithm.

Signals
Inputs:

Distances

A distance matrix

Outputs:

Selected Data

A data subset

Other Data

Remaining data

Description
The widget computes hierarchical clustering of arbitrary types of objects from a matrix of distances and shows a cor-
responding dendrogram.

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Dendrogram

1. The widget supports four ways of measuring distances between clusters:

Single linkage computes the distance between the closest elements of the two clusters
Average linkage computes the average distance between elements of the two clusters
Weighted linkage uses the WPGMA method
Complete linkage computes the distance between the clusters’ most distant elements

2. Labels of nodes in the dendrogram can be chosen in the Annotation box.
3. Huge dendrograms can be pruned in the Pruning box by selecting the maximum depth of the dendrogram. This

only affects the display, not the actual clustering.
4. The widget offers three different selection methods:

Manual (Clicking inside the dendrogram will select a cluster. Multiple clusters can be selected by holding
Ctrl/Cmd. Each selected cluster is shown in a different color and is treated as a separate cluster in the
output.)
Height ratio (Clicking on the bottom or top ruler of the dendrogram places a cutoff line in the graph. Items
to the right of the line are selected.)
Top N (Selects the number of top nodes.)

5. Use Zoom and scroll to zoom in or out.
6. If the items being clustered are instances, they can be added a cluster index (Append cluster IDs). The ID can ap-

pear as an ordinary Attribute, Class attribute or a Meta attribute. In the second case, if the data already has
a class attribute, the original class is placed among meta attributes.

7. The data can be automatically output on any change (Auto send is on) or, if the box isn’t ticked, by pushing Send
Data.

8. Clicking this button produces an image that can be saved.
9. Produce a report.

Examples
The workflow below shows the output of Hierarchical Clustering for the Iris data set in Data Table widget. We
see that if we choose Append cluster IDs in hierarchical clustering, we can see an additional column in the Data Table
named Cluster. This is a way to check how hierarchical clustering clustered individual instances.

http://research.amnh.org/~siddall/methods/day1.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

In the second example, we loaded the Iris data set again, but this time we added the Scatter Plot, showing all the in-
stances from the File widget, while at the same time receiving the selected instances signal from Hierarchical Clu-
stering. This way we can observe the position of the selected cluster(s) in the projection.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

k-Means

Groups items using the k-Means clustering algorithm.

Signals
Inputs:

Data

A data set.

Outputs:

Data

A data set with cluster index as a class attribute.

Description
The widget applies the k-Means clustering algorithm to the data and outputs a new data set in which the cluster index
is used as a class attribute. The original class attribute, if it exists, is moved to meta attributes. Scores of clustering re-
sults for various k are also shown in the widget.

1. Select the number of clusters.

Fixed: algorithm clusters data in a specified number of clusters.
Optimized: widget shows clustering scores for the selected cluster range.
Silhouette (contrasts average distance to elements in the same cluster with the average distance to elements
in other clusters)
Inter-cluster distance (measures distances between clusters, normally between centroids)
Distance to centroids (measures distances to the arithmetic means of clusters)

2. Select the initialization method (the way the algorithm begins clustering):

k-Means++ (first center is selected randomly, subsequent are chosen from the remaining points with proba-
bility proportioned to squared distance from the closest center)

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://en.wikipedia.org/wiki/Centroid
https://en.wikipedia.org/wiki/K-means%2B%2B

Random initialization (clusters are assigned randomly at first and then updated with further iterations)

Re-runs (how many times the algorithm is run) and maximal iterations (the maximum number of iteration
within each algorithm run) can be set manually.

3. The widget outputs a new data set with appended cluster information. Select how to append cluster information
(as class, feature or meta attribute) and name the column.

4. If Apply Automatically is ticked, the widget will commit changes automatically. Alternatively, click Apply.

5. Produce a report.

6. Check scores of clustering results for various k.

Examples
We are going to explore the widget with the following schema.

First, we load the Iris data set, divide it into three clusters and show it in the Data Table, where we can observe which
instance went into which cluster. The interesting parts are the Scatter Plot and Select Rows.

Since k-Means added the cluster index as a class attribute, the scatter plot will color the points according to the clu-
sters they are in.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectrows.html

What we are really interested in is how well the clusters induced by the (unsupervised) clustering algorithm match
the actual classes in the data. We thus take Select Rows widget, in which we can select individual classes and have the
corresponding points marked in the scatter plot. The match is perfect for setosa, and pretty good for the other two
classes.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectrows.html

You may have noticed that we left the Remove unused values/attributes and Remove unused classes in Se-
lect Rows unchecked. This is important: if the widget modifies the attributes, it outputs a list of modified instances
and the scatter plot cannot compare them to the original data.

Perhaps a simpler way to test the match between clusters and the original classes is to use the Distributions widget.

The only (minor) problem here is that this widget only visualizes normal (and not meta) attributes. We solve this by
using Select Columns: we reinstate the original class Iris as the class and put the cluster index among the attributes.

The match is perfect for setosa: all instances of setosa are in the third cluster (blue). 48 versicolors are in the second
cluster (red), while two ended up in the first. For virginicae, 36 are in the first cluster and 14 in the second.

https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectrows.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/distributions.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectcolumns.html

Manifold Learning

Nonlinear dimensionality reduction.

Signals
Inputs:

Data

A data set

Outputs:

Transformed Data

A data set with new, reduced coordinates.

Description
Manifold Learning is a technique which finds a non-linear manifold within the higher-dimensional space. The widget
then outputs new coordinates which correspond to a two-dimensional space. Such data can be later visualized with
Scatter Plot or other visualization widgets.

1. Method for manifold learning:

t-SNE
MDS, see also MDS widget
Isomap
Locally Linear Embedding
Spectral Embedding

2. Set parameters for the method:

t-SNE (distance measures):
Euclidean distance
Manhattan
Chebyshev
Jaccard
Mahalanobis
Cosine

https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
http://scikit-learn.org/stable/modules/manifold.html#t-distributed-stochastic-neighbor-embedding-t-sne
http://scikit-learn.org/stable/modules/manifold.html#multi-dimensional-scaling-mds
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/mds.html
http://scikit-learn.org/stable/modules/manifold.html#isomap
http://scikit-learn.org/stable/modules/manifold.html#locally-linear-embedding
http://scikit-learn.org/stable/modules/manifold.html#spectral-embedding

MDS (iterations and initialization):
max interations: maximum number of optimization interations
initialization: method for initialization of the algorithm (PCA or random)

Isomap:
number of neighbors

Locally Linear Embedding:
method:

standard
modified
hessian eigenmap
local

number of neighbors
max iterations

Spectral Embedding:
affinity:

nearest neighbors
RFB kernel

3. Output: the number of reduced features (components).
4. If Apply automatically is ticked, changes will be propagated automatically. Alternatively, click Apply.
5. Produce a report.

Manifold Learning widget produces different embeddings for high-dimensional data.

… figure:: images/collage-manifold.png

From left to right, top to bottom: t-SNE, MDS, Isomap, Locally Linear Embedding and Spectral Embedding.

Example
Manifold Learning widget transforms high-dimensional data into a lower dimensional approximation. This makes it
great for visualizing data sets with many features. We used voting.tab to map 16-dimensional data onto a 2D graph.
Then we used Scatter Plot to plot the embeddings.

http://scikit-learn.org/stable/modules/manifold.html#hessian-eigenmapping
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

MDS

Multidimensional scaling (MDS) projects items onto a plane fitted to given distances between points.

Signals
Inputs:

Distances

A distance matrix

Data

A data set

Outputs:

Data

A data set with MDS coordinates.

Data subset

Selected data

Description
Multidimensional scaling is a technique which finds a low-dimensional (in our case a two-dimensional) projection of
points, where it tries to fit distances between points as well as possible. The perfect fit is typically impossible to obtain
since the data is high-dimensional or the distances are not Euclidean.

In the input, the widget needs either a data set or a matrix of distances. When visualizing distances between rows,
you can also adjust the color of the points, change their shape, mark them, and output them upon selection.

The algorithm iteratively moves the points around in a kind of a simulation of a physical model: if two points are too
close to each other (or too far away), there is a force pushing them apart (or together). The change of the point’s posi-
tion at each time interval corresponds to the sum of forces acting on it.

https://en.wikipedia.org/wiki/Multidimensional_scaling
https://en.wikipedia.org/wiki/Euclidean_distance

1. The widget redraws the projection during optimization. Optimization is run automatically in the beginning and
later by pushing Start.

Max iterations: The optimization stops either when the projection changes only minimally at the last itera-
tion or when a maximum number of iterations has been reached.
Initialization: PCA (Torgerson) positions the initial points along principal coordinate axes. Random sets
the initial points to a random position and then readjusts them.
Refresh: Set how often you want to refresh the visualization. It can be at Every iteration, Every 5/10/25/50
steps or never (None). Setting a lower refresh interval makes the animation more visually appealing, but can
be slow if the number of points is high.

2. Defines how the points are visualized. These options are available only when visalizing distances between rows
(selected in the Distances widget).

Color: Color of points by attribute (gray for continuous, colored for discrete).
Shape: Shape of points by attribute (only for discrete).
Size: Set the size of points (Same size or select an attribute) or let the size depend on the value of the conti-
nuous attribute the point represents (Stress).
Label: Discrete attributes can serve as a label.
Symbol size: Adjust the size of the dots.
Symbol opacity: Adjust the transparency level of the dots.
Show similar pairs: Adjust the strength of network lines.
Jitter: Set jittering to prevent the dots from overlapping.

3. Adjust the graph with Zoom/Select. The arrow enables you to select data instances. The magnifying glass enables
zooming, which can be also done by scrolling in and out. The hand allows you to move the graph around. The rec-
tangle readjusts the graph proportionally.

4. Select the desired output:

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://en.wikipedia.org/wiki/Jitter

Original features only (input data set)
Coordinates only (MDS coordinates)
Coordinates as features (input data set + MDS coordinates as regular attributes)
Coordinates as meta attributes (input data set + MDS coordinates as meta attributes)

5. Sending the instances can be automatic if Send selected automatically is ticked. Alternatively, click Send
selected.

6. Save Image allows you to save the created image either as .svg or .png file to your device.
7. Produce a report.

The MDS graph performs many of the functions of the Visualizations widget. It is in many respects similar to the
Scatter Plot widget, so we recommend reading that widget’s description as well.

Example
The above graphs were drawn using the following simple schema. We used the iris.tab data set. Using the Distances
widget we input the distance matrix into the MDS widget, where we see the Iris data displayed in a 2-dimensional
plane. We can see the appended coordinates in the Data Table widget.

References
Wickelmaier, F. (2003). An Introduction to MDS. Sound Quality Research Unit, Aalborg University. Available here.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distances.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://homepages.uni-tuebingen.de/florian.wickelmaier/pubs/Wickelmaier2003SQRU.pdf

PCA

PCA linear transformation of input data.

Signals
Inputs:

Data

A data set.

Outputs:

Transformed Data

PCA transformed input data.

Components

Eigenvectors.

Description
Principal Component Analysis (PCA) computes the PCA linear transformation of the input data. It outputs either a
transformed data set with weights of individual instances or weights of principal components.

1. Select how many principal components you wish in your output. It is best to choose as few as possible with va-
riance covered as high as possible. You can also set how much variance you wish to cover with your principal
components.

2. You can normalize data to adjust the values to common scale.
3. When Apply Automatically is ticked, the widget will automatically communicate all changes. Alternatively, click

Apply.
4. Press Save Image if you want to save the created image to your computer.

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors
https://en.wikipedia.org/wiki/Principal_component_analysis

5. Produce a report.
6. Principal components graph, where the red (lower) line is the variance covered per component and the green

(upper) line is cumulative variance covered by components.

The number of components of the transformation can be selected either in the Components Selection input box or by
dragging the vertical cutoff line in the graph.

Examples
PCA can be used to simplify visualizations of large data sets. Below, we used the Iris data set to show how we can im-
prove the visualization of the data set with PCA. The transformed data in the Scatter Plot show a much clearer di-
stinction between classes than the default settings.

The widget provides two outputs: transformed data and principal components. Transformed data are weights for in-
dividual instances in the new coordinate system, while components are the system descriptors (weights for princial
components). When fed into the Data Table, we can see both outputs in numerical form. We used two data tables in
order to provide a more clean visualization of the workflow, but you can also choose to edit the links in such a way
that you display the data in just one data table. You only need to create two links and connect the Transformed data
and Components inputs to the Data output.

https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html

Save Distance Matrix

Saves a distance matrix.

Signals
Inputs:

Distances

A distance matrix.

Outputs:

None

Description

1. By clicking Save, you choose from previously saved distance matrices. Alternatively, tick the box on the left side
of the Save button and changes will be communicated automatically.

2. By clicking Save as, you save the distance matrix to your computer, you only need to enter the name of the file
and click Save. The distance matrix will be saved as type .dst.

Example
In the snapshot below, we used the Distance Transformation widget to transform the distances in the Iris data set.
We then chose to save the transformed version to our computer, so we could use it later on. We decided to output all
data instances. You can choose to output just a minor subset of the data matrix. Pairs are marked automatically. If
you wish to know what happened to our changed file, go here

https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancetransformation.html
https://docs.orange.biolab.si/3/visual-programming/widgets/unsupervised/distancefile.html

Calibration Plot

Shows the match between classifiers’ probability predictions and actual class probabilities.

Signals
Inputs:

Evaluation Results

Results of testing classification algorithms.

Outputs:

None

Description
The Calibration Plot plots class probabilities against those predicted by the classifier(s).

1. Select the desired target class from the drop down menu.
2. Choose which classifiers to plot. The diagonal represents optimal behaviour; the closer the classifier’s curve gets,

the more accurate its prediction probabilities are. Thus we would use this widget to see whether a classifier is
overly optimistic (gives predominantly positive results) or pesimitistic (gives predominantly negative results).

3. If Show rug is enabled, ticks are displayed at the bottom and the top of the graph, which represent negative and
positive examples respectively. Their position corresponds to the classifier’s probability prediction and the color
shows the classifier. At the bottom of the graph, the points to the left are those which are (correctly) assigned a
low probability of the target class, and those to the right are incorrectly assigned high probabilities. At the top of

https://en.wikipedia.org/wiki/Calibration_curve

the graph, the instances to the right are correctly assigned high probabilities and vice versa.
4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.
5. Produce a report.

Example
At the moment, the only widget which gives the right type of signal needed by the Calibration Plot is Test&Score.
The Calibration Plot will hence always follow Test&Score and, since it has no outputs, no other widgets follow it.

Here is a typical example, where we compare three classifiers (namely Naive Bayes, Tree and Constant) and input
them into Test&Score. We used the Titanic data set. Test&Score then displays evaluation results for each classifier.
Then we draw Calibration Plot and ROC Analysis widgets from Test&Score to further analyze the performance of
classifiers. Calibration Plot enables you to see prediction accuracy of class probabilities in a plot.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/constant.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/rocanalysis.html

Confusion Matrix

Shows proportions between the predicted and actual class.

Signals
Inputs:

Evaluation results

Results of testing the algorithms; typically from Test Learners

Outputs:

Selected Data

A data subset from the selected cells in the confusion matrix.

Description
The Confusion Matrix gives the number/proportion of instances between the predicted and actual class. The selec-
tion of the elements in the matrix feeds the corresponding instances into the output signal. This way, one can observe
which specific instances were misclassified and how.

The widget usually gets the evaluation results from Test & Score; an example of the schema is shown below.

1. When evaluation results contain data on multiple learning algorithms, we have to choose one in the Learners
box.

The snapshot shows the confusion matrix for Tree and Naive Bayesian models trained and tested on the iris data. The

https://en.wikipedia.org/wiki/Confusion_matrix
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html

righthand side of the widget contains the matrix for the naive Bayesian model (since this model is selected on the
left). Each row corresponds to a correct class, while columns represent the predicted classes. For instance, four in-
stances of Iris-versicolor were misclassified as Iris-virginica. The rightmost column gives the number of instances
from each class (there are 50 irises of each of the three classes) and the bottom row gives the number of instances
classified into each class (e.g., 48 instances were classified into virginica).

2. In Show, we select what data we would like to see in the matrix.

Number of instances shows correctly and incorrectly classified instances numerically.
Proportions of predicted shows how many instances classified as, say, Iris-versicolor are in which true
class; in the table we can read the 0% of them are actually setosae, 88.5% of those classified as versicolor are
versicolors, and 7.7% are virginicae.
Proportions of actual shows the opposite relation: of all true versicolors, 92% were classified as versico-
lors and 8% as virginicae.

3. In Select, you can choose the desired output.

Correct sends all correctly classified instances to the output by selecting the diagonal of the matrix.

Misclassified selects the misclassified instances.

None annuls the selection.

As mentioned before, one can also select individual cells of the table to select specific kinds of misclassified
instances (e.g. the versicolors classified as virginicae).

4. When sending selected instances, the widget can add new attributes, such as predicted classes or their probabili-
ties, if the corresponding options Predictions and/or Probabilities are checked.

5. The widget outputs every change if Send Automatically is ticked. If not, the user will need to click Send Selected
to commit the changes.

6. Produce a report.

Example
The following workflow demonstrates what this widget can be used for.

Test & Score gets the data from File and two learning algorithms from Naive Bayes and Tree. It performs cross-vali-
dation or some other train-and-test procedures to get class predictions by both algorithms for all (or some) data in-
stances. The test results are fed into the Confusion Matrix, where we can observe how many instances were mi-
sclassified and in which way.

In the output, we used Data Table to show the instances we selected in the confusion matrix. If we, for instance, click
Misclassified, the table will contain all instances which were misclassified by the selected method.

The Scatterplot gets two sets of data. From the File widget it gets the complete data, while the confusion matrix sends
only the selected data, misclassifications for instance. The scatter plot will show all the data, with bold symbols repre-
senting the selected data.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/datatable.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/file.html

Lift Curve

Measures the performance of a chosen classifier against a random classifier.

Signals
Inputs:

Evaluation Results

Results of classifiers’ tests on data.

Outputs:

None

Description
The Lift curve shows the relation between the number of instances which were predicted positive and those that are
indeed positive and thus measures the performance of a chosen classifier against a random classifier. The graph is
constructed with the cumulative number of cases (in descending order of probability) on the x-axis and the cumulati-
ve number of true positives on the y-axis. Lift curve is often used in segmenting the population, e.g., plotting the
number of responding customers against the number of all customers contacted. You can also determine the optimal
classifier and its threshold from the graph.

1. Choose the desired Target class. The default class is chosen alphabetically.
2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted.

Click on a classifier to select or deselect the curve.

3. Show lift convex hull plots a convex hull over lift curves for all classifiers (yellow curve). The curve shows the op-
timal classifier (or combination thereof) for each desired TP/P rate.

4. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

5. Produce a report.
6. 2-D pane with P rate (population) as x-axis and TP rate (true positives) as a y-axis. The diagonal line represents

the behaviour of a random classifier. Click and drag to move the pane and scroll in or out to zoom. Click on the
“A” sign at the bottom left corner to realign the pane.

Note:

The perfect classifier would have a steep slope towards 1 until all classes are guessed correctly and then run
straight along 1 on y-axis to (1,1).

Example
At the moment, the only widget which gives the right type of the signal needed by the Lift Curve is Test&Score.

In the example below, we try to see the prediction quality for the class ‘survived’ on the Titanic data set. We compa-
red three different classifiers in the Test Learners widget and sent them to Lift Curve to see their performance against
a random model. We see the Tree classifier is the best out of the three, since it best aligns with lift convex hull. We
also see that its performance is the best for the first 30% of the population (in order of descending probability), which
we can set as the threshold for optimal classification.

References
Handouts of the University of Notre Dame on Data Mining - Lift Curve. Available here.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://www3.nd.edu/~busiforc/handouts/DataMining/Lift%20Charts.html

Predictions

Shows models’ predictions on the data.

Signals
Inputs

Data

A data set.

Predictors

Predictors to be used on the data.

Outputs

Predictions

Original data with added predictions.

Description
The widget receives a data set and one or more predictors (classifiers, not learning algorithms - see the example be-
low). It outputs the data and the predictions.

1. Information on the input
2. The user can select the options for classification. If Show predicted class is ticked, the appended data table provi-

des information on predicted class. If Show predicted probabilities is ticked, the appended data table provides
information on probabilities predicted by the classifiers. The user can also select the predicted class he or she

wants displayed in the appended data table. The option Draw distribution bars provides a nice visualization of
the predictions.

3. By ticking the Show full data set, the user can append the entire data table to the Predictions widget.
4. Select the desired output.
5. The appended data table
6. Produce a report.

Despite its simplicity, the widget allows for quite an interesting analysis of decisions of predictive models; there is a
simple demonstration at the bottom of the page. Confusion Matrix is a related widget and although many things can
be done with any of them, there are tasks for which one of them might be much more convenient than the other. The
output of the widget is another data set, where predictions are appended as new meta attributes. You can select which
features you wish to output (original data, predictions, probabilities). The resulting data set can be appended to the
widget, but you can still choose to display it in a separate data table.

Example

We randomly split the heart-disease data into two subsets. The larger subset, containing 70 % of data instances, is
sent to Naive Bayes and Tree, so they can produce the corresponding model. Models are then sent into Predictions,
among with the remaining 30 % of the data. Predictions shows how these examples are classified.

To save the predictions, we simply attach the Save widget to Predictions. The final file is a data table and can be sa-
ved as in a .tab or .tsv format.

Finally, we can analyze the models’ predictions. For that, we first take Select Columns with which we move the meta
attributes with probability predictions to features. The transformed data is then given to the Scatterplot, which we set
to use the attributes with probabilities as the x and y axes, while the class is (already by default) used to color the data
points.

https://en.wikipedia.org/wiki/Predictive_modelling
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/save.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectcolumns.html
https://docs.orange.biolab.si/3/visual-programming/widgets/visualize/scatterplot.html

To get the above plot, we selected Jitter continuous values, since the decision tree gives just a few distinct probabili-
ties. The blue points in the bottom left corner represent the people with no diameter narrowing, which were correctly
classified by both models. The upper right red points represent the patients with narrowed vessels, which were cor-
rectly classified by both.

Note that this analysis is done on a rather small sample, so these conclusions may be ungrounded. Here is the entire
workflow:

Another example of using this widget is given in the documentation for the widget Confusion Matrix.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html

ROC Analysis

Plots a true positive rate against a false positive rate of a test.

Signals
Inputs:

Evaluation Results

Results of classifiers’ tests on data

Outputs:

None

Description
The widget shows ROC curves for the tested models and the corresponding convex hull. It serves as a mean of compa-
rison between classification models. The curve plots a false positive rate on an x-axis (1-specificity; probability that
target=1 when true value=0) against a true positive rate on a y-axis (sensitivity; probability that target=1 when true
value=1). The closer the curve follows the left-hand border and then the top border of the ROC space, the more accu-
rate the classifier. Given the costs of false positives and false negatives, the widget can also determine the optimal
classifier and threshold.

1. Choose the desired Target Class. The default class is chosen alphabetically.

2. If test results contain more than one classifier, the user can choose which curves she or he wants to see plotted.
Click on a classifier to select or deselect it.

3. When the data comes from multiple iterations of training and testing, such as k-fold cross validation, the results
can be (and usually are) averaged.

The averaging options are:

Merge predictions from folds (top left), which treats all the test data as if they came from a single
iteration
Mean TP rate (top right) averages the curves vertically, showing the corresponding confidence intervals
Mean TP and FP at threshold (bottom left) traverses over threshold, averages the positions of curves and
shows horizontal and vertical confidence intervals
Show individual curves (bottom right) does not average but prints all the curves instead

4. Option Show convex ROC curves refers to convex curves over each individual classifier (the thin lines positioned
over curves). Show ROC convex hull plots a convex hull combining all classifiers (the gray area below the curves).
Plotting both types of convex curves makes sense since selecting a threshold in a concave part of the curve cannot

yield optimal results, disregarding the cost matrix. Besides, it is possible to reach any point on the convex curve
by combining the classifiers represented by the points on the border of the concave region.

The diagonal dotted line represents the behaviour of a random classifier. The full diagonal line represents iso-
performance. A black “A” symbol at the bottom of the graph proportionally readjusts the graph.

5. The final box is dedicated to the analysis of the curve. The user can specify the cost of false positives (FP) and fal-
se negatives (FN), and the prior target class probability.

Default threshold (0.5) point shows the point on the ROC curve achieved by the classifier if it predicts the target
class if its probability equals or exceeds 0.5.

Show performance line shows iso-performance in the ROC space so that all the points on the line give the same
profit/loss. The line further to the upper left is better than the one down and right. The direction of the line de-
pends upon costs and probabilities. This gives a recipe for depicting the optimal threshold for the given costs: this
is the point where the tangent with the given inclination touches the curve and it is marked in the plot. If we push
the iso-performance higher or more to the left, the points on the iso-performance line cannot be reached by the
learner. Going down or to the right, decreases the performance.

The widget allows setting the costs from 1 to 1000. Units are not important, as are not the magnitudes. What
matters is the relation between the two costs, so setting them to 100 and 200 will give the same result as 400 and
800.

Defaults: both costs equal (500), Prior target class probability 50% (from the data).

False positive cost: 830, False negative cost 650, Prior target class probability 73%.

6. Press Save Image if you want to save the created image to your computer in a .svg or .png format.

7. Produce a report.

Example
At the moment, the only widget which gives the right type of signal needed by the ROC Analysis is Test&Score. Be-
low, we compare two classifiers, namely Tree and Naive Bayes, in Test&Score and then compare their performance
in ROC Analysis, Life Curve and Calibration Plot.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/testandscore.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/tree.html
https://docs.orange.biolab.si/3/visual-programming/widgets/model/naivebayes.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/liftcurve.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/calibrationplot.html

Test & Score

Tests learning algorithms on data.

Signals
Inputs

Data

Data for training and, if there is no separate test data set, also testing.

Test Data

Separate data for testing.

Learner

One or more learning algorithms.

Outputs

Evaluation results

Results of testing the algorithms.

Description
The widget tests learning algorithms. Different sampling schemes are available, including using separate test data.
The widget does two things. First, it shows a table with different classifier performance measures, such as classifica-
tion accuracy and area under the curve. Second, it outputs evaluation results, which can be used by other widgets for
analyzing the performance of classifiers, such as ROC Analysis or Confusion Matrix.

The Learner signal has an uncommon property: it can be connected to more than one widget to test multiple learners
with the same procedures.

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/rocanalysis.html
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html

1. The widget supports various sampling methods.

Cross-validation splits the data into a given number of folds (usually 5 or 10). The algorithm is tested by hol-
ding out examples from one fold at a time; the model is induced from other folds and examples from the held
out fold are classified. This is repeated for all the folds.
Leave-one-out is similar, but it holds out one instance at a time, inducing the model from all others and
then classifying the held out instances. This method is obviously very stable, reliable … and very slow.
Random sampling randomly splits the data into the training and testing set in the given proportion (e.g.
70:30); the whole procedure is repeated for a specified number of times.
Test on train data uses the whole data set for training and then for testing. This method practically always
gives wrong results.
Test on test data: the above methods use the data from Data signal only. To input another data set with te-
sting examples (for instance from another file or some data selected in another widget), we select Separate
Test Data signal in the communication channel and select Test on test data.

2. Only Test on test data requires a target class, e.g. having the disease or being of subvariety Iris setosa. When Tar-
get class is (None), the methods return the average value. Target class can be selected at the bottom of the
widget.

3. Produce a report.
4. The widget will compute a number of performance statistics:

Classification

Area under ROC is the area under the receiver-operating curve.
Classification accuracy is the proportion of correctly classified examples.
F-1 is a weighted harmonic mean of precision and recall (see below).
Precision is the proportion of true positives among instances classified as positive, e.g. the proportion of Iris vir-
ginica correctly identified as Iris virginica.
Recall is the proportion of true positives among all positive instances in the data, e.g. the number of sick among
all diagnosed as sick.

Regression

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://gim.unmc.edu/dxtests/roc3.htm
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall

MSE measures the average of the squares of the errors or deviations (the difference between the estimator and
what is estimated).
RMSE is the square root of the arithmetic mean of the squares of a set of numbers (a measure of imperfection of
the fit of the estimator to the data)
MAE is used to measure how close forecasts or predictions are to eventual outcomes.
R2 is interpreted as the proportion of the variance in the dependent variable that is predictable from the inde-
pendent variable.

Example
In a typical use of the widget, we give it a data set and a few learning algorithms and we observe their performance in
the table inside the Test & Score widget and in the ROC. The data is often preprocessed before testing; in this case
we did some manual feature selection (Select Columns widget) on Titanic data set, where we want to know only the
sex and status of the survived and omit the age.

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Root_mean_square
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/rocanalysis.html
https://docs.orange.biolab.si/3/visual-programming/widgets/data/selectcolumns.html

Another example of using this widget is presented in the documentation for the Confusion Matrix widget.

https://docs.orange.biolab.si/3/visual-programming/widgets/evaluation/confusionmatrix.html

ChainingChaining

Profiles objects of one type in the latent space of another object type through chaining of latent matri-
ces along paths in a data fusion graph.

SignalsSignals

Inputs:

Fitted Fusion Graph

Fitted collective latent data model.

Outputs:

Relation

Relationships between two groups of objects.

DescriptionDescription

Chaining constructs data profiles of objects of one type that are expressed in the latent space of an-
other object type. This is done by appropriately multiplying the latent matrices along paths that connect
start and end nodes in the fusion graph. The widget displays a fitted fusion graph on the right, where
you can select the start and end node (object type) that are then used in chaining.

1. The widget displays all chains that connect selected start node with the selected end node (in
orange). Click on the chain you wish to output.

2. Select what type of chain you wish to output:
latent space (widget outputs data profiles in the latent space)
feature space (widget outputs data profiles in the original domain space)

ExampleExample

This widget is great for constructing profiles that relate objects, which are not directly connected in a
fusion graph. In the example below we have three data sets: annotations of genes from the Gene On-
tology, literature on genes and literature on ontology terms. We use Chaining to see how genes relate
to ontology terms.

! v: latest "

Completion ScoringCompletion Scoring

Scores the quality of matrix completion using root mean squared error (RSME) metric.

SignalsSignals

Inputs:

Fitted fusion graph

Fitted collective latent data model.

Relation

Relationships between two groups of objects.

Outputs:

(None)

DescriptionDescription

This widget assesses the quality of matrix completion based on root mean squared error metric
(RMSE). Each row contains scores representing matrix completion quality of different relations. Results
for prediction models are in columns.

1. The RMSE value chart for the input relation matrix.

ExampleExample

https://en.wikipedia.org/wiki/Root-mean-square_deviation

Completion Scoring widget assesses the quality of matrix completion using the RMSE metric. Con-
nect it with Matrix Sampler to score prediction models (previously learnt on in-sample data) on out-of-
the-sample data. You can also use Mean Fuser to get a mean score for latent values.

! v: latest "

Fusion GraphFusion Graph

Constructs a data fusion graph and runs collective matrix factorization algorithm.

SignalsSignals

Inputs:

Relation

Relationships between two groups of objects.

Outputs:

Relation

Relationships between two groups of objects.

Fitted Fusion Graph

Fitted collective latent data model.

Fusion Graph

Input data system.

DescriptionDescription

Fusion Graph widget performs data fusion by collective matrix factorization. It fuses multiple related
data sets into one comprehensive structure. The widget returns a relational structure of the entire data
system estimated by a collective latent factor approach.

1. Information on the input (object types are nodes, relations are links between the nodes).
2. List of identified relations. Click on the relation to output it.
3. Specify a descriptive name for your fusion system.
4. Select the algorithm for factorization:

matrix tri-factorization decomposes each relation matrix into three latent matrices and
shares the latent matrices between related data sets. Unknown values are imputed prior
to collective factorization.
matrix tri-completion works the same as matrix tri-factorization, but does not require re-

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

lation matrices to be fully observed.
5. Select the initialization algorithm for matrix factorization.
6. Set the maximum number of iterations used for factorization. Default is 10.
7. Set the factorization rank (the ratio of data compression based on the input data). Default is

10%.
8. If Run after every change is ticked, the widget will automatically commit changes. Alternatively

press Run. For large data sets we recommend to commit the changes manually.

ExampleExample

The example below shows how to fuse several data sets together. Say we have the data on ontology
terms for many genes, literature on ontology terms and literature on genes. To fuse these data together
we first use Table to Relation widget, where we manually set the object type and relation names. Fu-
sion Graph will compile the fusion graph of our three data sets with connections between object types
based on previously defined data relations, display the connections and run matrix decomposition
algorithm.

! v: latest "

http://orange3-datafusion.readthedocs.io/en/latest/widgets/data-yeast/gene_annotations.tab
http://orange3-datafusion.readthedocs.io/en/latest/widgets/data-yeast/literature_go.tab
http://orange3-datafusion.readthedocs.io/en/latest/widgets/data-yeast/gene_literature.tab

IMDb ActorsIMDb Actors

Constructs a movies-by-actors or actors-by-actors relation matrix.

SignalsSignals

Inputs:

Filter

Data filter.

Outputs:

Movie Actors

A movies-by-actors relation matrix.

Costarring Actors

An actors-by-actors relation matrix.

DescriptionDescription

This widget gives you the access to the IMDb data sets on actors and movies. It outputs either a
movies-by-actors relation matrix, an actors-by-actors relation matrix or both.

1. Select how many actors from the IMDb database would you like to consider.
2. Click Apply to commit your data.

ExampleExample

This simple widget is great for learning how data fusion works since it enables immediate access to the

https://en.wikipedia.org/wiki/Internet_Movie_Database

IMDb database. To use it, you need to connect it to Movie Ratings widget in the input and with Fusion
Graph in the output. This will add the information on actors in relation to movies. You can view this
new data in the Data Table widget.

! v: latest "

https://en.wikipedia.org/wiki/Internet_Movie_Database

Latent FactorsLatent Factors

Draws data fusion graph with the estimated latent factors overlaid. Outputs latent factors for further
analysis.

SignalsSignals

Inputs:

Fitted fusion graph

Fitted collective latent data model.

Outputs:

Relation

Selected latent data matrix or a completed relation.

DescriptionDescription

Latent Factors widget displays the fusion graph together with the backbone and recipe matrices esti-
mated by collective matrix factorization.

Fused data from the widget input are decomposed into latent factors, which serve as components for
subsequent matrix reconstruction. You would normally draw this widget from Fusion Graph and feed
its output (a backbone matrix, a recipe matrix or a completed relation) into widgets for downstream
data analysis, such as Hierarchial Clustering or Heat Map.

1. Information on the input (object types are nodes, data relations are links between the nodes).
2. A list of recipe factors (latent matrices containing compressed representation of object types).

Recipe factors encode latent components of respective object types.
3. A list of backbone factors (latent matrices containing compressed representation of data rela-

tions). Backbone factors encode interactions between the latent components.
4. A list of completed relations (completed relation matrices obtained by multiplying the corre-

sponding latent matrices).

ExampleExample

In the example below we demonstrate how 8 separate yeast data sets are fused together in Fusion
Graph and then decomposed into latent factors with Latent Factors widget.

! v: latest "

http://orange3-datafusion.readthedocs.io/en/latest/widgets/data-yeast

Matrix SamplerMatrix Sampler

Samples a relation matrix.

SignalsSignals

Inputs:

Data

Data set.

Outputs:

In-sample Data

Selected data.

Out-of-the-sample Data

Remaining data.

DescriptionDescription

This widget samples the input data and sends both the sampled and the remaining data to the output.
It is useful for evaluating the performance of recommendation systems.

1. Select the desired sampling method:
rows (randomly samples entire matrix rows)
columns (randomly samples entire matrix columns)

rows and columns (samples from the entire matrix)
entries (randomly samples individual matrix elements)

2. Select the proportion of the data you want at the output.
3. Press Apply to commit the changes.

ExampleExample

Matrix Sampler widget samples data into two subsets: in-sample and out-of-the-sample data. This is
useful if you want to check the accuracy of matrix reconstruction with Completion Scoring. Feed in-
sample data into the Fusion Graph to reconstruct the matrix and then compare the results with out-of-
the-sample data.

! v: latest "

Mean FuserMean Fuser

Constructs relation matrices based on the average values of matrix elements.

SignalsSignals

Inputs:

Fusion Graph

A relational scheme of a data compendium.

Relation

Relationships between two groups of objects.

Outputs:

Mean-fitted fusion graph

Mean fuser.

Relation

Relationships between two groups of objects.

DescriptionDescription

The widget completes each relation matrix at the input based on the available data in the matrix. Un-
known values in the matrix can be replaced with the values obtained by averaging matrix rows, matrix
columns or the entire data matrix.

1. Select the axis for mean value calculation:
rows
columns
all

2. Output selected relation matrix, where unknown matrix elements are replaced with mean values.

ExampleExample

Mean Fuser widget is useful for comparing RMSE values in Completion Scoring widget for the input
data set. In the example below we have sampled movie ratings, fed the in-sample movie ratings data
into Fusion Graph and from there into Completion Scoring for evaluation. We also fed the out-of-
sample data from Matrix Sampler into Completion Scoring widget as out-of-sample movie ratings
data is needed to assess how well the predicted values correspond to the true data. Finally, we com-
pare prediction to those obtained by Mean Fuser.

! v: latest "

Movie GenresMovie Genres

Constructs a movies-by-genres or actors-by-genres relation matrix.

SignalsSignals

Inputs:

Row type

Instances from the input data.

Outputs:

Genres

Data-by-genres relation matrix.

DescriptionDescription

This widget matches movies or actors to movie genres and forms a relation matrix. It is used to obtain
information about the genres to which movies in the input belong or about genres that are associated
with actors given in the input.

1. A list of movie genres included in the MovieLens database.

ExampleExample

Below we constructed a movies-by-genres relation matrix using the Movie Genres widget. You can
see in the Data Table that all movies are matched by their genres.

! v: latest "

Movie RatingsMovie Ratings

Constructs a relation matrix of user ratings for movies.

SignalsSignals

Inputs:

(None)

Outputs:

Ratings

Movie ratings relation matrix.

DescriptionDescription

Movie Ratings widget gives you access to data on user ratings for more than 8500 movies from the
Movielens database. The data set contains 1 to 5-star ratings representing user-movie preferences.
This is a good widget to try out data fusion as it gives you instant access to the data.

1. Select a subset of movies for which you would like to obtain user ratings:
fraction of movies will output a specified fraction of movies selected uniformly at random
from the entire database.
time period will output all the movies released in a specified time period

2. Click Apply to commit the changes.

https://movielens.org/

ExampleExample

Movie Ratings will output users-by-movies data matrix for further analysis. Feed it into the Fusion
Graph to decompose data matrix into the product of smaller latent data matrices or view the data in a
Data Table.

! v: latest "

Table to RelationTable to Relation

Converts a data table into a relation matrix. Labels objects in rows and columns of a relation matrix.

SignalsSignals

Inputs:

Data

Attribute-valued data set.

Outputs:

Relation

Relationships between two groups of objects.

DescriptionDescription

Table to Relation widget is probably the most often used widget in the data fusion set. It allows you to
define relations just by labeling the axes. Your data set from the File widget will be transformed into a
relation matrix, which can be later fused together with other relation matrices into a collective latent
data model.

1. Provide a descriptive name for the relation. Option *transpose* will shift the axes.
2. Label the object type in columns. Your entry will be displayed on top of the table. Note that the

labels are case-sensitive.
3. Label the object type in rows. If there is a label present in the data, it will be used as default.
4. If Auto send is ticked, your changes will be communicated automatically. Alternatively click

Send.

ExampleExample

In the example below we took two regular files with data on movie ratings and movie genres and fed
them into separate Table to Relation widgets. In these widgets we specified the relations contained in
the data and named the axes accordingly. See how Fusion Graph is then able to organize data sets
into a relational graph, i.e. a data fusion graph, simply on the basis of axes names?

! v: latest "

https://en.wikipedia.org/wiki/Transpose

Gradient DescentGradient Descent

Educational widget that shows gradient descent algorithm on a logistic or linear regression.

SignalsSignals

Inputs:

Data

Input data set.

Outputs:

Data

Data with columns selected in widget.

Classifier

Model produced on the current step of the algorithm.

Coefficients

Logistic regression coefficients on the current step of the algorithm.

DescriptionDescription

This widget shows steps of gradient descent for a logistic and linear regression step by step. Gradient
descent is demonstrated on two attributes that are selected by user.

Gradient descent is performed on logistic regression if class in data set is discrete and linear regres-
sion if class is continuous.

https://en.wikipedia.org/wiki/Gradient_descent

1. Select two attributes (x and y) on which gradient descent algorithm is preformed. Select target
class. It is class that is classified against all other classes.

2. Learning rate is step size in a gradient descent

With stochastic checkbox you can select whether gradient descent is stochastic or not. If sto-
chastic is checked you can set step size that is amount of steps of stochastic gradient descent
performed in one press on step button.

Restart: start algorithm from beginning

3. Step: perform one step of the algorithm

Step back: make a step back in the algorithm

4. Run: automatically perform several steps until algorithm converge

Speed: set speed of automatic stepping

5. Save Image saves the image to the computer in a .svg or .png format.

Report includes widget parameters and visualization in the report.

ExampleExample

In Orange we connected File widget with Iris data set to Gradient Descent widget. Iris data set has dis-
crete class so Logistic regression will be used this time. We connected outputs of the widget to Predic-

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

tions widget to see how data are classified and Data Table widget where we inspect coefficients of lo-
gistic regression.

We opened Gradient Descent widget and set X to sepal width and Y to sepal length. Target class is set
to Iris-virginica. We set learning rate to 0.02. With click in graph we set beginning coefficients (red dot).

We performs step of the algorithm with pressing Step button. When we get bored with clicking we can
finish stepping with press on Run button.

If we want to go back in the algorithm we can do it with pressing Step back button. This will also
change model. Current model uses positions of last coefficients (red-yellow dot).

In the end we want to see predictions for input data so we can open Predictions widget. Predictions are
listed in left column. We can compare this predictions to real classes.

If we want to demonstrate linear regression we can change data set to Housing. That data set has a
continuous class variable. When using linear regression we can select only one feature what means
that our function is linear. The another parameter that is plotted in the graph is intercept of a linear
function.

This time we selected INDUS as a independent variable. In widget we can make same actions as be-
fore. In the end we can also check predictions for each point with Predictions widget. And coefficients
of linear regression in a Data Table.

https://en.wikipedia.org/wiki/Y-intercept
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Dependent_and_independent_variables

! v: latest "

Interactive k-meansInteractive k-means

Educational widget that shows the working of a k-means clustering.

SignalsSignals

Inputs:

Data

Input data set.

Outputs:

Data

Data set with cluster annotation.

Centroids

Centroids position.

DescriptionDescription

The aim of this widget is to show the working of a k-means clustering algorithm on two attributes from
a data set. The widget applies k-means clustering to the selected two attributes step by step. Users
can step through the algorithm and see how it works.

https://en.wikipedia.org/wiki/K-means_clustering

1. Select attributes for x and y axis.

2. Number of centroids: set the number of centroids.

Randomize: randomly assigns position of centroids. If you want to add centroid on a particular
position in the graph, click on this position. If you want to move the centroid, drag and drop it on
the desired position.

Show membership lines: if ticked, connection between data points and closest centroids are
shown.

3. Recompute centroids or Reassign membership: step through different stages of the algoritm.
Recompute centroids moves centroids to new positions, based on the most central position of
the data assigned to the centroid. Reassign membership reassigns data points to the centroid
they are the closest to.

Step back: make a step back in the algorithm.

Run: step through the algorithm automatically.

Speed: set the speed of automatic stepping.

4. Save Image saves the image to the computer in a .svg or .png format.

ExampleExample

Here are two possible schemas that show how the Interactive k-Means widget can be used. You can
load the data from File or use any other data source, such as Paint Data. Interactive k-Means widget
also produces a data table with results of clustering and a table with centroids positions. These data
can be inspected with the Data Table widget.

Let us demonstrate the working of the widget on Iris data set.

We provide the data using File. Then we open Interactive k-Means. Say, we will demonstrate k-
Means on petal length and petal width attributes, so we set them as X and Y parameters. We also de-
cided to perform clustering for 3 clusters. This is set as the Number of centroids.

If we are not satisfied with positions of centroids we can change them with a click on the Randomize
button. Then we perform the first recomputing of centroids with a click on the Recompute centroids.
We get the following image.

The next step is to reassign membership of all points to the closest centroid. This is performed with a
click on the Reasign membership button.

Then we repeat these two steps until the algorithm converges. This is the final result.

Perhaps we are not satisfied with the result because we noticed that maybe classification into 4 clus-
ters would be better. So we decided to add a new centroid. We can do this by increasing the number of
centroids in the control menu or with a click on the position in the graph where we want to place the
centroid. We decided to add it with a click. The new centroid is the orange one.

Now we can repeat running the algorithm until it converges again, but before that we will move the new
centroid to change the behavior of the algorithm. We grabbed the orange centroid and moved it to the
desired position.

Then we press Run and observe the centroids while the algorithm converges again.

! v: latest "

Polynomial ClassificationPolynomial Classification

Educational widget that visually demonstrates classification in two classes for any classifier.

SignalsSignals

Inputs

Data

Input data set.

Preprocessor

Data preprocessors.

Learner

Classification algorithm used in the widget. Default set to Logistic Regression Learner.

Outputs

Learner

Classification algorithm used in the widget.

Classifier

Trained classifier.

Coefficients

Classifier coefficients if it has them.

DescriptionDescription

This widget interactively shows classification probabilities for classification in two classes using color
gradient and contour lines for any classifiers form Orange Classification module. In the widget, polyno-
mial expansion can be set. Polynomial expansion is a regulation of the degree of polynom that is used
to transform the input data and has an effect on classification. If polynomial expansion is set to 1 it
means that untransformed data are used in the regression. If polynomial expansion is set to 2 we get
following additional attributes:

first attribute on power 2
first attribute * second attribute
second attribute on power 2

1. Classifier name.

2. X: attribute on axis x.

Y: attribute on axis y.

Target class: Class in input data that is classified apart from others classes because widget sup-
port only two

class classification.

Polynomial expansion: Degree of polynom that is used to transform the input data.

3. Show contours: Enable contour lines in the graph.

Contour step: Density of contour lines.

4. Save Image saves the image to the computer in a .svg or .png format.

Report includes widget parameters and visualization in the report.

ExampleExample

We loaded iris data set with the File widget and connected it to Polynomial Classification widget. To
demonstrate outputs connections we connected Coefficients to Data Table widget where we can in-
spect their values. Learner output can be connected to Test & Score widget and Classifier to Predic-
tions widget.

In the widget we selected sepal length as our X variable and sepal width as our Y variable. We set
Polynomial expansion to 1. That performs classification on non transformed data. Result is show on
the figure below. Color gradient represents the probability to classify data on its position in one of two
classes. Blue color represents classification in target class and red color classification in class with all
others examples.

In next example we changed File widget with Paint data widget and plotted some custom data. Be-
cause center of data has one class and surrounding another Polynomial expansion degree 1 does not
perform good classification. We set Polynomial expansion to 2 and got classification in figure below.
We also selected to use contour lines.

! v: latest "

Polynomial RegressionPolynomial Regression

Educational widget that interactively shows regression line for different regressors.

SignalsSignals

Inputs:

Data

Input data set. It needs at least two continuous attributes.

Preprocessor

Data preprocessors.

Learner

Regression algorithm used in the widget. Default set to Linear Regression.

Outputs:

Learner

Regression algorithm used in the widget.

Predictor

Trained regressor.

Coefficients

Regressor coefficients if it has them.

DescriptionDescription

This widget interactively shows regression line using any of the regressors from Orange3 Regression
module. In the widget, polynomial expansion can be set. Polynomial expansion is a regulation of the
degree of polynom that is used to transform the input data and has an effect on the shape of a curve. If
polynomial expansion is set to 1 it means that untransformed data are used in the regression.

https://en.wikipedia.org/wiki/Polynomial_expansion

1. Regressor name.

2. Input: independent variable on axis x.

Polynomial expansion: degree of polynomial expansion.

Target: dependent variable on axis y.

3. Save Image saves the image to the computer in a .svg or .png format.

Report includes widget parameters and visualization in the report.

ExampleExample

We loaded iris data set with the File widget. Then we connected Linear Regression learner to the

Polynomial Regression widget. In the widget we selected petal length as our Input variable and petal
width as our Target variable. We set Polynomial expansion to 1 which gives us a linear regression line.
The result is shown on the figure below.

The line can fit better if we increase the Polynomial expansion parameter. Say, we set it to 3.

To observe different results, change Linear Regression to any other regression learner from Orange.
Example below is done with Regression Tree learner.

! v: latest "

Bag of WordsBag of Words

Generates a bag of words from the input corpus.

SignalsSignals

Inputs:

Corpus

Corpus instance.

Outputs:

Corpus

Corpus with bag of words.

DescriptionDescription

Bag of Words model creates a corpus with word counts for each data instance (document). The count
can be either absolute, binary (contains or does not contain) or sublinear (logarithm of the term fre-
quency). Bag of words model is required in combination with Word Enrichment and could be used for
predictive modelling.

1. Parameters for bag of words model:

Term Frequency:

Count: number of occurences of a word in a document
Binary: word appears or does not appear in the document
Sublinear: logarithm of term frequency (count)

http://orange3-text.readthedocs.io/en/latest/widgets/wordenrichment.html
https://en.wikipedia.org/wiki/Tf%E2%80%93idf

Document Frequency:

(None)
IDF: inverse document frequency
Smooth IDF: adds one to document frequencies to prevent zero division.

Regulariation:

(None)
L1 (Sum of elements): normalizes vector length to sum of elements
L2 (Euclidean): normalizes vector length to sum of squares

2. Produce a report.
3. If Commit Automatically is on, changes are communicated automatically. Alternatively press

Commit.

ExampleExample

In the first example we will simply check how the bag of words model looks like. Load book-excerpt-
s.tab with Corpus widget and connect it to Bag of Words. Here we kept the defaults - a simple count
of term frequencies. Check what the Bag of Words outputs with Data Table. The final column in white
represents term frequencies for each document.

In the second example we will try to predict document category. We are still using the book-excerpt-
s.tab data set, which we sent through Preprocess Text with default parameters. Then we connected
Preprocess Text to Bag of Words to obtain term frequencies by which we will compute the model.

http://nlp.stanford.edu/IR-book/html/htmledition/inverse-document-frequency-1.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
http://orange3-text.readthedocs.io/en/latest/widgets/corpus.html
http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html

Connect Bag of Words to Test & Score for predictive modelling. Connect SVM or any other classifier
to Test & Score as well (both on the left side). Test & Score will now compute performance scores for
each learner on the input. Here we got quite impressive results with SVM. Now we can check, where
the model made a mistake.

Add Confusion Matrix to Test & Score. Confusion matrix displays correctly and incorrectly classified
documents. Select Misclassified will output misclassified documents, which we can further inspect with
Corpus Viewer.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

Corpus ViewerCorpus Viewer

Displays corpus content.

SignalsSignals

Inputs:

Corpus

Corpus instance.

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

Corpus Viewer is meant for viewing text files (instances of Corpus). It will always output an instance of
corpus. If RegExp filtering is used, the widget will output only matching documents.

http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus
http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. Information:

Documents: number of documents on the input
Preprocessed: if preprocessor is used, the result is True, else False. Reports also on
the number of tokens and types (unique tokens).
POS tagged: if POS tags are on the input, the result is True, else False.
N-grams range: if N-grams are set in Preprocess Text, results are reported, default is
1-1 (one-grams).
Matching: number of documents matching the RegExp Filter. All documents are out-
put by default.

2. RegExp Filter: Python regular expression for filtering documents. By default no documents are
filtered (entire corpus is on the output).

3. Search Features: features by which the RegExp Filter is filtering. Use Ctrl (Cmd) to select multi-
ple features.

4. Display Features: features that are displayed in the viewer. Use Ctrl (Cmd) to select multiple
features.

5. Show Tokens & Tags: if tokens and POS tag are present on the input, you can check this box to
display them.

6. If Auto commit is on, changes are communicated automatically. Alternatively press Commit.

ExampleExample

Corpus Viewer can be used for displaying all or some documents in corpus. In this example, we will
first load book-excerpts.tab, that already comes with the add-on, into Corpus widget. Then we will pre-
process the text into words, filter out the stopwords, create bi-grams and add POS tags (more on pre-
processing in Preprocess Text). Now we want to see the results of preprocessing. In Corpus Viewer we
can see, how many unique tokens we got and what they are (tick Show Tokens & Tags). Since we
used also POS tagger to show part-of-speech labels, they will be displayed alongside tokens under-
neath the text.

Now we will filter out just the documents talking about a character Bill. We use regular expression
\bBill\b to find the documents containing only the word Bill. You can output matching or non-matching
documents, view them in another Corpus Viewer or further analyse them.

http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html
https://docs.python.org/3/library/re.html
http://orange3-text.readthedocs.io/en/latest/widgets/corpus.html
http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html

! v: latest "

CorpusCorpus

Load a corpus of text documents, (optionally) tagged with categories.

SignalsSignals

Inputs:

(None)

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

Corpus widget reads text corpora from files and sends a corpus instance to its output channel. History
of the most recently opened files is maintained in the widget. The widget also includes a directory with
sample corpora that come pre-installed with the add-on.

The widget reads data from Excel (.xlsx), comma-separated (.csv) and native tab-delimited (.tab) files.

http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. Browse through previously opened data files, or load any of the sample ones.
2. Browse for a data file.
3. Reloads currently selected data file.
4. Information on the loaded data set.
5. Features that will be used in text analysis.
6. Features that won’t be used in text analysis and serve as labels or class.

You can drag and drop features between the two boxes and also change the order in which they
appear.

ExampleExample

The first example shows a very simple use of Corpus widget. Place Corpus onto canvas and connect
it to Corpus Viewer. We’ve used booxexcerpts.tab data set, which comes with the add-on, and inspect-
ed it in Corpus Viewer.

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

The second example demonstrates how to quickly visualize your corpus with Word Cloud. We could
connect Word Cloud directly to Corpus, but instead we decided to apply some preprocessing with
Preprocess Text. We are again working with book-excerpts.tab. We’ve put all text to lowercase, tok-
enized (split) the text to words only, filtered out English stopwords and selected a 100 most frequent
tokens.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html
http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html

GeoMapGeoMap

Displays geographic distribution of data.

SignalsSignals

Inputs:

Data

Data set.

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

GeoMap widget shows geolocations from textual (string) data. It finds mentions of geographic names
(countries and capitals) and displays distributions (frequency of mentiones) of these names on a map.
It works with any Orange widget that outputs a data table and that contains at least one string attribute.
The widget outputs selected data instances, that is all documents containing mentions of a selected
country (or countries).

http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. Select the meta attribute you want to search geolocations by. The widget will find all mentions of
geolocations in a text and display distributions on a map.

2. Select the type of map you wish to display. The options are World, Europe and USA. You can
zoom in and out of the map by pressing + and - buttons on a map or by mouse scroll.

3. The legend for the geographic distribution of data. Countries with the boldest color are most of-
ten mentioned in the selected region attribute (highest frequency).

To select documents mentioning a specific country, click on a country and the widget will output match-
ing documents. To select more than one country hold Ctrl/Cmd upon selection.

ExampleExample

GeoMap widget can be used for simply visualizing distributions of geolocations or for a more complex
interactive data analysis. Here, we’ve queried NY Times for articles on Slovenia for the time period of
the last year (2015-2016). First we checked the results with Corpus Viewer.

http://orange3-text.readthedocs.io/en/latest/widgets/nytimes.html
http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

Then we sent the data to GeoMap to see distributiosn of geolocations by country attribute. The at-
tribute already contains country tags for each article, which is why NY Times is great in combinations
with GeoMap. We selected Germany, which sends all the documents tagged with Germany to the out-
put. Remember, we queried NY Times for articles on Slovenia.

We can again inspect the output with Corpus Viewer. But there’s a more interesting way of visualizing
the data. We’ve sent selected documents to Preprocess Text, where we’ve tokenized text to words and
removed stopwords.

Finally, we can inspect the top words appearing in last year’s documents on Slovenia and mentioning
also Germany with Word Cloud.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html

NY TimesNY Times

Loads data from the New York Times’ Article Search API.

SignalsSignals

Inputs:

(None)

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

NYTimes widget loads data from New York Times’ Article Search API. You can query NYTimes articles
from September 18, 1851 to today, but the API limit is set to allow retrieving only a 1000 documents
per query. Define which features to use for text mining, Headline and Abstract being selected by
default.

To use the widget, you must enter your own API key.

https://developer.nytimes.com/
http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus
https://developer.nytimes.com/signup

1. To begin your query, insert NY Times’ Article Search API key. The key is securely saved in your
system keyring service (like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted
when clearing widget settings.

2. Set query parameters:

Query
Query time frame. The widget allows querying articles from September 18, 1851 on-
wards. Default is set to 1 year back from the current date.

3. Define which features to include as text features.

4. Information on the output.

5. Produce report.

6. Run or stop the query.

ExampleExample

NYTimes is a data retrieving widget, similar to Twitter and Wikipedia. As it can retrieve geolocations,
that is geographical locations the article mentions, it is great in combination with GeoMap widget.

http://orange3-text.readthedocs.io/en/latest/widgets/twitter.html
http://orange3-text.readthedocs.io/en/latest/widgets/wikipedia.html
http://orange3-text.readthedocs.io/en/latest/widgets/geomap.html

First, let’s query NYTimes for all articles on Slovenia. We can retrieve the articles found and view the
results in Corpus Viewer. The widget displays all the retrieved features, but includes on selected fea-
tures as text mining features.

Now, let’s inspect the distribution of geolocations from the articles mentioning Slovenia. We can do this
with GeoMap. Unsuprisignly, Croatia and Hungary appear the most often in articles on Slovenia (dis-
counting Slovenia itself), with the rest of Europe being mentioned very often as well.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html
http://orange3-text.readthedocs.io/en/latest/widgets/geomap.html

Preprocess TextPreprocess Text

Preprocesses corpus with selected methods.

SignalsSignals

Inputs:

Corpus

Corpus instance.

Outputs:

Corpus

Preprocessed corpus.

DescriptionDescription

Preprocess Text splits your text into smaller units (tokens), filters them, runs normalization (stemming,
lemmatization), creates n-grams and tags tokens with part-of-speech labels. Steps in the analysis are
applied sequentially and can be turned on or off.

https://en.wikipedia.org/wiki/Stemming
https://en.wikipedia.org/wiki/N-gram
https://en.wikipedia.org/wiki/Part_of_speech

1. Information on preprocessed data. Document count reports on the number of documents on
the input. Total tokens counts all the tokens in corpus. Unique tokens excludes duplicate tokens
and reports only on unique tokens in the corpus.

2. Transformation transforms input data. It applies lowercase transformation by default.

Lowercase will turn all text to lowercase.
Remove accents will remove all diacritics/accents in text.

naïve → naive

Parse html will detect html tags and parse out text only.

<a href…>Some text → Some text

Remove urls will remove urls from text.

This is a http://orange.biolab.si/ url. → This is a url.

3. Tokenization is the method of breaking the text into smaller components (words, sentences,
bigrams).

http://orange.biolab.si/
https://en.wikipedia.org/wiki/Tokenization_(lexical_analysis)

Word & Punctuation will split the text by words and keep punctuation symbols.

This example. → (This), (example), (.)

Whitespace will split the text by whitespace only.

This example. → (This), (example.)

Sentence will split the text by fullstop, retaining only full sentences.

This example. Another example. → (This example.), (Another example.)

Regexp will split the text by provided regex. It splits by words only by default (omits
punctuation).
Tweet will split the text by pre-trained Twitter model, which keeps hashtags, emoti-
cons and other special symbols.

This example. :-) #simple → (This), (example), (.), (:-)), (#simple)

4. Normalization applies stemming and lemmatization to words. (I’ve always loved cats. → I have
alway love cat.) For languages other than English use Snowball Stemmer (offers languages
available in its NLTK implementation).

Porter Stemmer applies the original Porter stemmer.
Snowball Stemmer applies an improved version of Porter stemmer (Porter2). Set the
language for normalization, default is English.
WordNet Lemmatizer applies a networks of cognitive synonyms to tokens based on a
large lexical database of English.

5. Filtering removes or keeps a selection of words.

Stopwords removes stopwords from text (e.g. removes ‘and’, ‘or’, ‘in’…). Select the
language to filter by, English is set as default. You can also load your own list of stop-
words provided in a simple *.txt file with one stopword per line.

Click ‘browse’ icon to select the file containing stopwords. If the file was properly
loaded, its name will be displayed next to pre-loaded stopwords. Change ‘English’ to
‘None’ if you wish to filter out only the provided stopwords. Click ‘reload’ icon to re-
load the list of stopwords.

Lexicon keeps only words provided in the file. Load a *.txt file with one word per line
to use as lexicon. Click ‘reload’ icon to reload the lexicon.

Regexp removes words that match the regular expression. Default is set to remove
punctuation.

Document frequency keeps tokens that appear in not less than and not more than
the specified number / percentage of documents. If you provide integers as parame-
ters, it keeps only tokens that appear in the specified number of documents. E.g. DF
= (3, 5) keeps only tokens that appear in 3 or more and 5 or less documents. If you
provide floats as parameters, it keeps only tokens that appear in the specified per-

https://en.wikipedia.org/wiki/Regular_expression
https://tartarus.org/martin/PorterStemmer/
http://snowballstem.org/
http://wordnet.princeton.edu/

centage of documents. E.g. DF = (0.3, 0.5) keeps only tokens that appear in 30% to
50% of documents. Default returns all tokens.

Most frequent tokens keeps only the specified number of most frequent tokens. De-
fault is a 100 most frequent tokens.

6. N-grams Range creates n-grams from tokens. Numbers specify the range of n-grams. Default
returns one-grams and two-grams.

7. POS Tagger runs part-of-speech tagging on tokens.

Averaged Perceptron Tagger runs POS tagging with Matthew Honnibal’s averaged
perceptron tagger.
Treebank POS Tagger (MaxEnt) runs POS tagging with a trained Penn Treebank
model.
Stanford POS Tagger runs a log-linear part-of-speech tagger designed by Toutanova
et al. Please download it from the provided website and load it in Orange.

8. Produce a report.

9. If Commit Automatically is on, changes are communicated automatically. Alternatively press
Commit.

Note: Preprocess Text applies preprocessing steps in the order they are listed. This means it will
first transform the text, then apply tokenization, POS tags, normalization, filtering and finally con-
structs n-grams based on given tokens. This is especially important for WordNet Lemmatizer since it
requires POS tags for proper normalization.

Useful Regular ExpressionsUseful Regular Expressions

Here are some useful regular expressions for quick filtering:

\bword\b matches exact word
\w+ matches only words, no punctuation
\b(B|b)\w+\b matches words beginning with the letter b
\w{4,} matches words that are longer than 4 characters
\b\w+(Y|y)\b matches words ending with the letter y

ExamplesExamples

In the first example we will observe the effects of preprocessing on our text. We are working with book-
excerpts.tab that we’ve loaded with Corpus widget. We have connected Preprocess Text to Corpus
and retained default preprocessing methods (lowercase, per-word tokenization and stopword removal).
The only additional parameter we’ve added as outputting only the first 100 most frequent tokens. Then
we connected Preprocess Text with Word Cloud to observe words that are the most frequent in our
text. Play around with different parameters, to see how they transform the output.

https://spacy.io/blog/part-of-speech-pos-tagger-in-python
http://web.mit.edu/6.863/www/fall2012/projects/writeups/max-entropy-nltk.pdf
http://nlp.stanford.edu/software/tagger.shtml#Download
http://orange3-text.readthedocs.io/en/latest/widgets/corpus.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html

The second example is slightly more complex. We first acquired our data with Twitter widget. We
quired the internet for tweets from users @HillaryClinton and @realDonaldTrump and got their tweets
from the past two weeks, 242 in total.

In Preprocess Text there’s Tweet tokenization available, which retains hashtags, emojis, mentions
and so on. However, this tokenizer doesn’t get rid of punctuation, thus we expanded the Regexp filter-
ing with symbols that we wanted to get rid of. We ended up with word-only tokens, which we displayed
in Word Cloud. Then we created a schema for predicting author based on tweet content, which is ex-
plained in more details in the documentation for Twitter widget.

http://orange3-text.readthedocs.io/en/latest/widgets/twitter.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html
http://orange3-text.readthedocs.io/en/latest/widgets/twitter.html

PubmedPubmed

Fetch data from PubMed journals.

SignalsSignals

Inputs:

(None)

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science
journals, and online books. The widget allows you to query and retrieve these entries. You can use reg-
ular search or construct advanced queries.

http://www.ncbi.nlm.nih.gov/pubmed
http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus
http://www.ncbi.nlm.nih.gov/pubmed

1. Enter a valid e-mail to retrieve queries.

2. Regular search:

Author: queries entries from a specific author. Leave empty to query by all authors.
From: define the time frame of publication.
Query: enter the query.

Advanced search: enables you to construct complex queries. See PubMed’s website to learn
how to construct such queries. You can also copy-paste constructed queries from the website.

3. Find records finds available data from PubMed matching the query. Number of records found will
be displayed above the button.

4. Define the output. All checked features will be on the output of the widget.

5. Set the number of record you wish to retrieve. Press Retrieve records to get results of your
query on the output. Below the button is an information on the number of records on the output.

ExampleExample

PubMed can be used just like any other data widget. In this example we’ve queried the database for
records on orchids. We retrieved 1000 records and kept only ‘abstract’ in our meta features to limit the
construction of tokens only to this feature.

https://www.ncbi.nlm.nih.gov/pubmed/advanced

We used Preprocess Text to remove stopword and words shorter than 3 characters (regexp
\b\w{1,2}\b). This will perhaps get rid of some important words denoting chemicals, so we need to
be careful with what we filter out. For the sake of quick inspection we only retained longer words, which
are displayed by frequency in Word Cloud.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html

Topic ModellingTopic Modelling

Topic modelling with Latent Diriclet Allocation, Latent Semantic Indexing or Hierarchical Dirichlet
Process.

SignalsSignals

Inputs:

Corpus

Corpus instance.

Outputs:

Data

Data with topic weights appended.

Topics

Selected topics with word weights.

All Topics

Topic weights by tokens.

DescriptionDescription

Topic Modelling discovers abstract topics in a corpus based on clusters of words found in each docu-
ment and their respective frequency. A document typically contains multiple topics in different propor-
tions, thus the widget also reports on the topic weight per document.

1. Topic modelling algorithm:

Latent Semantic Indexing
Latent Dirichlet Allocation
Hierarchical Dirichlet Process

2. Parameters for the algorithm. LSI and LDA accept only the number of topics modelled, with the
default set to 10. HDP, however, has more parameters. As this algorithm is computationally very
demanding, we recommend you to try it on a subset or set all the required parameters in ad-
vance and only then run the algorithm (connect the input to the widget).

First level concentration (γ): distribution at the first (corpus) level of Dirichlet Process
Second level concentration (α): distribution at the second (document) level of Dirich-
let Process
The topic Dirichlet (α): concentration parameter used for the topic draws
Top level truncation (Τ): corpus-level truncation (no of topics)
Second level truncation (Κ): document-level truncation (no of topics)
Learning rate (κ): step size
Slow down parameter (τ)

3. Produce a report.
4. If Commit Automatically is on, changes are communicated automatically. Alternatively press

Commit.

ExampleExample

In the first example, we present a simple use of the Topic Modelling widget. First we load grimm-
tales-selected.tab data set and use Preprocess Text to tokenize by words only and remove stopwords.
Then we connect Preprocess Text to Topic Modelling, where we use a simple Latent Semantic In-
dexing to find 10 topics in the text.

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Hierarchical_Dirichlet_process
http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html

LSI provides both positive and negative weights per topic. A positive weight means the word is highly
representative of a topic, while a negative weight means the word is highly unrepresentative of a topic
(the less it occurs in a text, the more likely the topic). Positive words are colored green and negative
words are colored red.

We then select the first topic and display the most frequent words in the topic in Word Cloud. We also
connected Preprocess Text to Word Cloud in order to be able to output selected documents. Now we
can select a specific word in the word cloud, say little. It will be colored red and also highlighted in the
word list on the left.

Now we can observe all the documents containing the word little in Corpus Viewer.

In the second example, we will look at the correlation between topics and words/documents. Connect
Topic Modelling to Heat Map. Ensure the link is set to All Topics - Data. Topic Modelling will output a
matrix of topic weights by words from text (more precisely, tokens).

We can observe the output in a Data Table. Tokens are in rows and retrieved topics in colums. Values
represent how much a word is represented in a topic.

http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html
http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

To visualize this matrix, open Heat Map. Select Merge by k-means and Cluster - Rows to merge similar
rows into one and sort them by similarity, which makes the visualization more compact.

In the upper part of the visualization, we have words that highly define topics 1-3 and in the lower part
those that define topics 5 and 10.

We can similarly observe topic representation across documents. We connect another Heat Map to
Topic Modelling and set link to Corpus - Data. We set Merge and Cluster as above.

In this visualization we see how much is a topic represented in a document. Looks like Topic 1 is repre-
sented almost across the entire corpus, while other topics are more specific. To observe a specific set
of document, select either a clustering node or a row in the visualization. Then pass the data to Corpus
Viewer.

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

TwitterTwitter

Fetching data from The Twitter Search API.

SignalsSignals

Inputs:

(None)

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

Twitter widget enables querying tweets through Twitter API. You can query by content, author or both
and accummulate results should you wish to create a larger data set. The widget only supports REST
API and allows queries for up to two weeks back.

https://dev.twitter.com/rest/public/search
http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. To begin your queries, insert Twitter key and secret. They are securely saved in your system
keyring service (like Credential Vault, Keychain, KWallet, etc.) and won’t be deleted when clear-
ing widget settings. You must first create a Twitter app to get API keys.

2. Set query parameters:

Query word list: list desired queries, one per line. Queries are automatically joined by
OR.
Search by: specify whether you want to search by content, author or both. If search-
ing by author, you must enter proper Twitter handle (without @) in the query list.
Allow retweets: if ‘Allow retweets’ is checked, retweeted tweets will also appear on
the output. This might duplicate some results.
Date: set the query time frame. Twitter only allows retrieving tweets from up to two
weeks back.
Language: set the language of retrieved tweets. Any will retrieve tweets in any

https://apps.twitter.com/

language.
Max tweets: set the top limit of retrieved tweets. If box is not ticked, no upper bound
will be set - widget will retrieve all available tweets.
Accumulate results: if ‘Accumulate results’ is ticked, widget will append new queries
to the previous ones. Enter new queries, run Search and new results will be append-
ed to the previous ones.

3. Define which features to include as text features.

4. Information on the number of tweets on the output.

5. Produce report.

6. Run query.

ExamplesExamples

First, let’s try a simple query. We will search for tweets containing either ‘data mining’ or ‘machine
learning’ in the content and allow retweets. We will further limit our search to only a 100 tweets in
English.

First, we’re checking the output in Corpus Viewer to get the initial idea about our results. Then we’re
preprocessing the tweets with lowercase, url removal, tweet tokenizer and removal of stopword and
punctuation. The best way to see the results is with Word Cloud. This will display the most popular
words in field of data mining and machine learning in the past two weeks.

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html

Our next example is a bit more complex. We’re querying tweets from Hillary Clinton and Donald Trump
from the presidential campaign 2016.

Then we’ve used Preprocess Text to get suitable tokens on our output. We’ve connected Preprocess
Text to Bag of Words in order to create a table with words as features and their counts as values. A
quick check in Word Cloud gives us an idea about the results.

Now we would like to predict the author of the tweet. With Select Columns we’re setting ‘Author’ as
our target variable. Then we connect Select Columns to Test & Score. We’ll be using Logistic Re-
gression as our learner, which we also connect to Test & Score.

We can observe the results of our author predictions directly in the widget. AUC score is quite ok.
Seems like we can to some extent predict who is the author of the tweet based on the tweet content.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html
http://orange3-text.readthedocs.io/en/latest/widgets/bagofwords.html

WikipediaWikipedia

Fetching data from MediaWiki RESTful web service API.

SignalsSignals

Inputs:

(None)

Outputs:

Corpus

A Corpus instance.

DescriptionDescription

Wikipedia widget is used to retrieve texts from Wikipedia API and it is useful mostly for teaching and
demonstration.

https://www.mediawiki.org/wiki/API:Tutorial
http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. Query parameters:

Query word list, where each query is listed in a new line.
Language of the query. English is set by default.
Number of articles to retrieve per query (range 1-25). Please note that querying is
done recursively and that disambiguations are also retrieved, sometimes resulting in
a larger number of queries than set on the slider.

2. Select which features to include as text features.
3. Information on the output.
4. Produce a report.
5. Run query.

ExampleExample

This is a simple example, where we use Wikipedia and retrieve the articles on ‘Slovenia’ and ‘Ger-
many’. Then we simply apply default preprocessing with Preprocess Text and observe the most fre-
quent words in those articles with Word Cloud.

http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html
http://orange3-text.readthedocs.io/en/latest/widgets/wordcloud.html

Wikipedia works just like any other corpus widget (NY Times, Twitter) and can be used accordingly.
! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/nytimes.html
http://orange3-text.readthedocs.io/en/latest/widgets/twitter.html

Word CloudWord Cloud

Generates a word cloud from corpus.

SignalsSignals

Inputs:

Topic

Selected topic.

Corpus

A Corpus instance.

Outputs:

Corpus

Documents that match the selection.

DescriptionDescription

Word Cloud displays tokens in the corpus, their size denoting the frequency of the word in corpus.
Words are listed by their frequency (weight) in the widget. The widget outputs documents, containing
selected tokens from the word cloud.

http://orange3-text.readthedocs.io/en/latest/scripting/corpus.html#corpus

1. Information on the input.

number of words (tokens) in a topic
number of documents and tokens in the corpus

2. Adjust the plot.

If Color words is ticked, words will be assigned a random color. If unchecked, the
words will be black.
Word tilt adjust the tilt of words. The current state of tilt is displayed next to the slider
(‘no’ is the default).
Regenerate word cloud plot the cloud anew.

3. Words & weights displays a sorted list of words (tokens) by their frequency in the corpus or top-
ic. Clicking on a word will select that same word in the cloud and output matching documents.
Use Ctrl to select more than one word. Documents matching ANY of the selected words will be
on the output (logical OR).

4. Save Image saves the image to your computer in a .svg or .png format.

ExampleExample

Word Cloud is an excellent widget for displaying the current state of the corpus and for monitoring the
effects of preprocessing.

Use Corpus to load the data. Connect Preprocess Text to it and set your parameters. We’ve used de-
faults here, just to see the difference between the default preprocessing in the Word Cloud widget and
the Preprocess Text widget.

http://orange3-text.readthedocs.io/en/latest/widgets/corpus.html
http://orange3-text.readthedocs.io/en/latest/widgets/preprocesstext.html

We can see from the two widgets, that Preprocess Text displays only words, while default preprocess-
ing in the Word Cloud tokenizes by word and punctuation.

! v: latest "

Word EnrichmentWord Enrichment

Word enrichment analysis for selected documents.

SignalsSignals

Inputs:

Data

Corpus instance.

Selected Data

Selected instances from corpus.

Outputs:

(None)

DescriptionDescription

Word Enrichment displays a list of words with lower p-values (higher significance) for a selected sub-
set compared to the entire corpus. Lower p-value indicates a higher likelihood that the word is signifi-
cant for the selected subset (not randomly occurring in a text). FDR (False Discovery Rate) is linked to
p-value and reports on the expected percent of false predictions in the set of predictions, meaning it
account for false positives in list of low p-values.

1. Information on the input.

Cluster words are all the tokens from the corpus.
Selected words are all the tokens from the selected subset.
After filtering reports on the enriched words found in the subset.

2. Filter enables you to filter by:

p-value
false discovery rate (FDR)

ExampleExample

In the example below, we’re retrieved recent tweets from the 2016 presidential candidates, Donald
Trump and Hillary Clinton. Then we’ve preprocessed the tweets to get only words as tokens and to re-
move the stopwords. We’ve connected the preprocessed corpus to Bag of Words to get a table with
word counts for our corpus.

https://en.wikipedia.org/wiki/P-value
http://www.nonlinear.com/support/progenesis/comet/faq/v2.0/pq-values.aspx
http://orange3-text.readthedocs.io/en/latest/widgets/bagofwords.html

Then we’ve connected Corpus Viewer to Bag of Words and selected only those tweets that were pub-
lished by Donald Trump. See how we marked only the Author as our Search feature to retrieve those
tweets.

Word Enrichment accepts two inputs - the entire corpus to serve as a reference and a selected sub-
set from the corpus to do the enrichment on. First connect Corpus Viewer to Word Enrichment (input
Matching Docs → Selected Data) and then connect Bag of Words to it (input Corpus → Data). In the
Word Enrichment widget we can see the list of words that are more significant for Donald Trump than
they are for Hillary Clinton.

! v: latest "

http://orange3-text.readthedocs.io/en/latest/widgets/corpusviewer.html

Network AnalysisNetwork Analysis

Statistical analysis of network data.

SignalsSignals

Inputs:

Network

An instance of Network Graph.

Items

Properties of a network file.

Outputs:

Network

An instance of Network Graph with appended information.

Items

New properties of a network file.

DescriptionDescription

Network Analysis widget computes node-level and graph-level summary statistics for the network. It
can output a network with the new computed statistics appended or an extended item data table.

Graph levelGraph level

Number of nodes: number of vertices in a network.
Number of edges: number of connections in a network.
Average degree: average number of connections per node.
Diameter: maximum eccentricity of the graph.
Radius: minimum eccentricity of the graph.
Average shortest path length: expected distance between two nodes in the graph.
Density: ratio between actual number of edges and maximum number of edges (fully connected
graph).
Degree assortativity coefficient: correlations between nodes of similar degree.
Degree pearson correlation coefficient: same as degree assortativity coefficient but with a
scipy.stats.pearsonr function.
Estrada index: Estrada index of the graph.
Graph clique number: number of nodes in the largest clique (size of a clique).
Graph number of cliques: number of cliques (subsets of nodes, where every two nodes are
connected).
Graph transitivity: ratio of all possible triangles in the network (if node A connects to B and C,
how often are B and C connected in the graph).

http://networkx.github.io/documentation/networkx-1.7/reference/generated/networkx.algorithms.distance_measures.diameter.html#diameter
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html
http://www.sciencedirect.com/science/article/pii/S0009261400001585

Average clustering coefficient: average of the local clustering coefficients of all the vertices.
Number of connected components: number of separate networks in a graph
Number of strongly connected components: parts of network where every vertex is reachable
from every other vertex (for directed graphs only).
Number of weakly connected components: parts of network where replacing all of its directed
edges with undirected edges produces a connected (undirected) graph (for directed graphs
only).
Number of attracting components: node in a direct graph that a random walker in a graph cannot
leave (for directed graphs only).

Node levelNode level

Degree: number of edges per node.
In-degree: number of incoming edges in a directed graph.
Out-degree: number of outgoing edges in a directed graph.
Average neighbor degree: average degree of neighboring nodes.

Clustering coefficient: ratio of triangles in a node neighborhood to all possible triangles.
Number of triangles: number of triangles that include a node as one vertex.
Squares clustering coefficient: ratio of possible squares that exist for a node.
Number of cliques: number of complete (fully connected) subgraphs in a network.
Degree centrality: ratio of other nodes connected to the node.
In-degree centrality: ratio of incoming edges to a node in a directed graph.
Out-degree centrality: ratio of outgoing edges from a node in directed graph.
Closeness centrality: distance to all other nodes.
Betweenness centrality: measure of control a node exerts over the interaction of other nodes in
the network.
Information centrality: proportion of total information flow that is controlled by each node.
Random-walk betweenness centrality: number of times a node would be on the path between
two nodes if employing a random walk.
Approx. random-walk betweenness centrality: approximate current-flow betweenness centrality.
Eigenvector centrality: score nodes by their connections to high-scoring nodes (measure of
centrality of a node based on its connection to other central nodes).
Eigenvector centrality (NumPy): eigenvector centrality with NumPy eigenvalue solver.
Load centrality: ratio of all shortest paths that lead through the node.
Core number: largest value k of a k-core containing that node.
Eccentricity: maximum distance between the node and every other node in the network.
Closeness vitality: change in the sum of distances for all node pairs when excluding that node.

If Commit automatically is on, new information will be commited automatically. Alternatively, press
Commit.

ExampleExample

This simple example shows how Network Analysis can enrich the workflow. We have used
airtraffic.net as our input network from Network File and sent it to Network Analysis. We’ve decided to
compute density, number of cliques and graph transitivity at graph level and degree, clustering
coefficient and degree centrality at node level. The widget instantly computes score for graph-level
methods and displays them in the widget. It also computes scores for node-level methods, appends
them as additional columns and outputs them as Items.

https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.centrality.approximate_current_flow_betweenness_centrality.html
http://orange3-network.readthedocs.io/en/latest/widgets/networkfile.html

We can use node-level scores with Distributions widget to observe, say, clustering coefficient
distribution or set the size of nodes in Network Explorer to Degree.

! v: latest "

http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

Network ClusteringNetwork Clustering

Detect clusters in a network.

SignalsSignals

Inputs:

Network

An instance of Network Graph.

Outputs:

Network

An instance of Network Graph with clustering information appended.

DescriptionDescription

Network Clustering widget finds clusters in a network. Clustering works with two algorithms, one from
Raghavan et al. (2007), which uses label propagation to find appropriate clusters, and one from Leung
et al. (2009), which builds upon the work from Raghavan and adds hop attenuation as a parameters for
cluster formation.

1. Clustering parameters: - Max. iterations: maximum number of iteration allowed for the algorithm
to run (can converge before reaching the maximum). - Clustering method:

Label propagation clustering (Raghavan et al., 2007)
Label propagation clustering (Leung et al., 2009) with hop attenuation.

2. Information on the number of clusters found.

3. If Auto-commit is ticked, results will be automatically sent to the output. Alternatively, press
Commit.

ExampleExample

Network Clustering can help you uncover cliques and highly connected groups in a network. First, we
will use Network File to load leu_by_genesets.net data set. Then we will pass the network through
Network Clustering. The widget found 28 clusters in a network. To visualize the results, use Network
Explorer and set Color attribute to Cluster. This will color network nodes with the corresponding cluster
color - this is a great way to visualize highly connected groups in dense networks.

! v: latest "

http://orange3-network.readthedocs.io/en/latest/widgets/networkfile.html
http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

Network ExplorerNetwork Explorer

Visually explore the network and its properties.

SignalsSignals

Inputs:

Network

An instance of Network Graph.

Node Subset

A subset of vertices.

Node Data

Information on vertices.

Node Distances

Data on distances between nodes.

Outputs:

Selected sub-network

A network of selected nodes.

Distance Matrix

Distance matrix.

Selected Items

Information on selected vertices.

Highlighted Items

Information on highlighted vertices.

Remaining Items

Information on remaining items (not selected or highlighted).

DescriptionDescription

Network Explorer is the primary widget for visualizing network graphs. It displays a graph with
Fruchterman-Reingold layout optimization and enables setting the color, size and label of nodes. One
can also highlight nodes of specific properties and output them.

Nodes can be moved around freely as their position in space is not fixed (only optimized). To select a
subset of nodes, draw a rectangle around the subset. To highlight the nodes, set the criterium in
Marking tab and press Enter to turn highlighted nodes (orange) into selected nodes (red). To use pan
and move the network around, use the right click. Scroll in for zoom.

DisplayDisplay

1. Information on the network. Reports on the number (and proportion) of nodes and edges.
2. Nodes: re-layout nodes with Fruchterman-Reingold optimization. Color and set the size of nodes

by attribute. Set the maximum and minimum size of nodes and/or invert their sizing.
3. Node labels | tooltips: set node labels from the menu on the left and node tooltips from the menu

on the right.
4. Edges: - If Relative edge widths is ticked, edges will have a thickness proportionate to their

weight. Weights must be provided on the input for the option to be available. - If Show edge
weights is ticked, weight will be displayed above the edges.

MarkingMarking

https://en.wikipedia.org/wiki/Force-directed_graph_drawing

1. Information on the output. Reports on the number of nodes in the graph, selected nodes (red
color), and highlighted nodes (orange color).

2. Highlight nodes: - None. Nodes are highlighted. - ...whose attributes contain. Nodes that satisfy
a stated condition will be highlighted. - ...neighbors of selected, ≤ N hops away. Highlights nodes
of selected points extending a specified number of hops away. - ...with at least N connections.
With equal or more connections than specified in ‘Connections’. - ...with at most N connections.
With less or equal connections than specified in ‘Connections’. - ...with more connections than
any neighbor. Highlights well connected nodes (hubs). - ...with more connections than average
neighbor. Highlights relatively well connected nodes. - ...with most connections. Highligts a
specified number of well connected nodes. - ...given in the ItemSubset input signal. Highlights
nodes matching the provided subset criteria (ID or other attribute). If ‘Output Changes
Automatically’ is ticked, changes will be communicated automatically. Alternatively, press ‘Output
Changes’.

ExamplesExamples

In the first example we will simply display a network. We loaded lastfm.net data in Network File and
send the data to Network Explorer. The widget shows an optimized projection of artist similarity data.
We colored the nodes by ‘best tag’ attribute, showing different genres artists belong to, and set the size
to the number of listeners per artist.

http://orange3-network.readthedocs.io/en/latest/widgets/networkfile.html

The second example shows how to highlight a specific subset in the graph. We continue to use
lastfm.net data from the Network File. We also retained connection to the Network Explorer.

http://orange3-network.readthedocs.io/en/latest/widgets/networkfile.html

Then we created a second link to Data Table widget, where we selected all the artists from the punk
genre. We sent these data to Network Explorer where we set Highlight nodes to ...given in the
ItemSubset input signal. Attribute ID was automatically considered for matching nodes. We can see
nodes we selected in the subset highlighted in the graph. To mark them as a selected subset, press
Enter.

! v: latest "

Network FileNetwork File

Read network graph file in Pajek or GML format.

SignalsSignals

Inputs:

(None)

Outputs:

Network

An instance of Network Graph.

Items

Properties of a network file.

DescriptionDescription

Network File widget reads network files and sends the input data to its output channel. History of the
most recently opened files in maintained in the widget. The widget also includes a directory with
sample data sets that come pre-installed with the add-on.

The widget reads data in .net, .gml, .gpickle, .gz, and .edgelist formats. A complimentary .tab or .csv
data set can be provided for node information. Orange by default matches a file with the same name
as .net file. If (None) is selected, the widget will generate the data from the graph.

1. Graph File. Loads network file and (optionally) constructs a data table from the graph. A
dropdown menu provides access to documentation data sets with Browse documentation
networks.... The folder icon provides access to local data files. If Build graph data table
automatically is checked, the widget will not output an inferred data table (no Items output will be
available).

2. Vertices Data File. Information on the network nodes. Reads standard Orange data files. he
folder icon provides access to local data files.

3. Information on the constructed network. Reports on the type of graph, number of nodes and
edges and the provided vertices data file.

ExamplesExamples

We loaded lastfm.net from documentation data set (dropdown → Browse documentation networks)
and connected Data Table and Network Explorer to the widget. Network File widget automatically
matched the corresponding vertices data file. It outputs Network to Network Explorer where we can
visualize the constructed network and Items to Data Table, where we can check the attributes of
vertices.

http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

The second example shows how to use the Network add-on for predictive modelling. We used
airtraffic.net data and visualized the network in Network Explorer. We colored the nodes by FAA Hub
attribute (is the airport a hub or not).

http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

Then we tried to predict this value using Test&Score and a few classifiers (Random Forest, AdaBoost,
SVM) from the core Orange. We can also connect the output of Test&Score to Network Explorer
using the Predictions → Node Data link and then coloring the nodes by predictions in the visualization.

! v: latest "

Network From DistancesNetwork From Distances

Constructs a network from distances between instances.

SignalsSignals

Inputs:

Distances

A distance matrix.

Outputs:

Network

An instance of Network Graph.

Data

Attribute-valued data set.

Distances

A distance matrix.

DescriptionDescription

Network from Distances constructs a network graph from a given distance matrix. Graph is
constructed by connecting nodes from data table where the distance between nodes is between the
given threshold. In other words, all instances with a distance lower than the selected threshold, will be
connected.

1. Edges: - Distance threshold: a closeness threshold for the formation of edges. - Percentile: the
percentile of data instances to be connected. - Include also closest neighbors: includes a
number of closest neighbor to the selected instances.

2. Node selection: - Keep all nodes: entire network is on the ouput. - Components with at least X
nodes: filters out nodes with less than the set number of nodes. - Largest connected component:
keep only the largest cluster.

3. Edge weights: - Proportional to distance: weights are set to reflect the distance (closeness). -
Inverted distance: weights are set to reflect the inverted distance.

4. Information on the constructed network: - Data items on input: number of instances on the input.
- Network nodes: number of nodes in the network (and the percentage of the original data). -
Network edges: number of constructed edges/connections (and the average number of
connections per node).

5. Distance graph. Manually select the distance threshold from the graph by dragging the vertical
line left or right.

ExampleExample

Network from Distances creates networks from distance matrices. It can transform continuous-valued
data sets from a data table via distance matrix into a network graph. This widget is great for visualizing
instance similarity as a graph of connected instances.

We took iris.tab to visualize instance similarity in a graph. We sent the output of File widget to
Distances, where we computed Euclidean distances between rows (instances). Then we sent the
output of Distances to Network from Distances, where we set the distance threshold (how similar the
instances have to be to draw an edge between them) to 0.598. We kept all nodes and set edge
weights to proportional to distance.

Then we observed the constructed network in a Network Explorer. We colored the nodes by iris
attribute.

! v: latest "

http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

Network GeneratorNetwork Generator

SignalsSignals

Inputs:

(None)

Outputs:

Generated Network

An instance of Network Graph.

DescriptionDescription

Network Generator constructs exemplary networks. It is mostly intended for teaching/learning about
networks.

1. Generate graph: - Balanced tree - Barbell - Circular ladder - Complete - Complete bipartite -
Cycle - Grid - Hypercube - Ladder - Lobster - Lollipop - Path - Regular - Scale-free - Shell - Star
- Waxman - Wheel

2. Approx. number of nodes: nodes that should roughly be in the network (some networks cannot
exactly satisfy this condition, hence an approximation).

3. If Auto-generate is on, the widget will automatically send the constructed graph to the output.
Alternatively, press Generate graph.

ExampleExample

Network Generator is a nice tool to explore typical graph structures.

https://networkx.github.io/documentation/development/reference/generated/networkx.generators.classic.balanced_tree.html#networkx.generators.classic.balanced_tree
https://en.wikipedia.org/wiki/Barbell_graph
http://mathworld.wolfram.com/CircularLadderGraph.html
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/Cycle_(graph_theory)
http://mathworld.wolfram.com/GridGraph.html
https://en.wikipedia.org/wiki/Hypercube_graph
https://en.wikipedia.org/wiki/Ladder_graph
http://mathworld.wolfram.com/LobsterGraph.html
https://en.wikipedia.org/wiki/Lollipop_graph
https://en.wikipedia.org/wiki/Path_(graph_theory)
https://en.wikipedia.org/wiki/Regular_graph
https://en.wikipedia.org/wiki/Scale-free_network
https://networkx.github.io/documentation/development/reference/generated/networkx.generators.random_graphs.random_shell_graph.html#networkx.generators.random_graphs.random_shell_graph
https://en.wikipedia.org/wiki/Star_(graph_theory)
https://networkx.github.io/documentation/development/reference/generated/networkx.generators.geometric.waxman_graph.html#networkx.generators.geometric.waxman_graph
https://en.wikipedia.org/wiki/Wheel_graph

Here, we generated a Scale-free graph with approximately 50 vertices and sent it to Network Analysis.
We computed the clustering coefficient and sent the data to Network Explorer. Finally, we observed the
generated graph in the visualization and set the size of the vertices to Clustering coefficient. This is a
nice tool to observe and explain the properties of networks.

! v: latest "

http://orange3-network.readthedocs.io/en/latest/widgets/networkanalysis.html
http://orange3-network.readthedocs.io/en/latest/widgets/networkexplorer.html

BioMart

Gives access to BioMart databases.

Signals
Inputs:

None.

Outputs:

Data

Data set.

Description
BioMart is a widget for direct access to BioMart databases. It sources data from BioMart, filters it by categories
(gene, region, phenotype, gene ontology, etc.) and appends selected attributes in the output (IDs, sources, strains,
etc.). Read more on the BioMart database library here.

1. Clear cached data.
2. Select the database to source your data from.
3. Select the dataset (organism) to source your genes from.

http://www.biomart.org/news.html
http://www.biomart.org/news.html
http://nar.oxfordjournals.org/content/43/W1/W589.full.pdf+html

4. If Unique results only is ticked, the widget will prevent data duplication. Click Get results to output the data.
5. Set the output:

in Attributes you set the meta data you wish to output (e.g. IDs, sources, strains...).
in Filter you filter the data by gene, phenotype, ontology, protein domains, etc.

Example
BioMart is a great widget for appending additional information to your data. We used brown-selected data in the
File widget. Then we selected Ensembl genes 81 (Sanger UK) database to source our additional data from. We decid-
ed to append Ensembl Gene ID, Ensembl Transcript ID, gene type and PDB ID. We also filtered the data to output
only those genes that can be found on chromosome I. We got 9997 instances with 4 meta attributes. Then we used
Merge Data widget to append these metas to our data. We matched the data by gene/Ensemble gene ID and in the
end we got a merged data table with 5 meta attributes.

! v: latest "

Data Profiles

Plots gene expression levels by attribute in a graph.

Signals
Inputs:

Data

Data set.

Outputs:

Selected Data

Instances that the user has manually selected from the plot.

Description
Data Profiles plots gene expression levels for each attribute in a graph. The default graph displays the mean expres-
sion level for the input data set. The x-axis represents attributes and the y-axis gene expression values. By hovering
over the line you can see which gene it represents and by click on the line you will select the gene and output it.

1. Information on the input data.
2. Select display options:

Expression Profiles will display expression levels for individual data instances.
Quartiles will show quartile cut-off points.

3. If the data has classes, you can select which class to display by clicking on it. Such data will also be colored by
class. Unselect All will show an empty plot, while Select All will diplay all data instances by class.

4. Select which attribute you wish to use as a profile label.
5. If Auto commit is on, the widget will automatically apply changes to the output. Alternatively click Commit.

Example
Data Profiles is a great widget for visualizing significant gene expression levels, especially if the data has been
sourced at different timepoints. This allows the user to see differences in expression levels in time for each instance
in the data set and the overall mean.

Below we used the PIPAx widget, where we selected 8 AX4 Dictyostelium experiments, all having been sourced at
diffferent timepoints and belonging to one of the two replicates. We decided to average replicates (to get one instance
for both replicates) and to apply logarithmic transformation to adjust expression levels.

In Select Genes we decided to observe only the three genes from the data set that are a part of the increased exocy-
tosis process (lsvB, pldB, amp3), which we selected in the Import gene set names option. This allows us to specify
which biological process we’re interested in and to observe only the specified genes.

Then we observe expression levels in Data Profiles widget, where we see all three Expression Profiles plotted, to-
gether with Quartiles and mean expression level. Finally, we selected the gene with the highest overall expression lev-
el and output it to Data Table.

! v: latest "

Databases Update

Updates local systems biology databases, like gene ontologies, annotations, gene names, protein interaction net-
works, and similar.

Signals
Inputs:

None

Outputs:

None

Description
With the bioinformatics add-on you can access several databases directly from Orange. The widget can also be used
to update and manage locally stored databases.

1. Find the desired database.
2. A list of available databases described with data source, update availability, date of your last update and file size.

A large Update button will be displayed next to the database that needs to be updated.
3. Update All will update and Download All will download all the selected databases. Cancel will abort the

action.
4. Some data sets require the Access code. Type it in the provided field to access the database.
5. Information on the selected databases.

To get a more detailed information on the particular database hover on its name.

! v: latest "

dictyExpress

Gives access to dictyExpress databases.

Signals
Inputs:

(None)

Outputs:

Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding op-
tion is chosen, the average of multiple replicates.

Description
dictyExpress is a widget for a direct access to dictyExpress database and it is very similar to the GenExpress
and GEO Data Sets widgets as it allows you to dowload selected experiments.

1. The widget will automatically save (cache) downloaded data, which makes them available also in the offline
mode. To reset the widget click Clear cache.

2. Exclude labels with constant values removes labels that are the same for all the selected experiments in the
output.

3. Click Commit to output the data.
4. Publicly available data are accessible from the outset. Use Token to access password protected data.
5. Available experiments can be filtered with the Search box at the top.

Example
In the schema below we connected ditcyExpress to a Data Table to observe all of the selected experiments. Then

http://dictyexpress.biolab.si/
http://dictyexpress.biolab.si/

we used Differential Expression widget to select the most relevant genes and output them to another Data
Table.

! v: latest "

Differential Expression

Plots differential gene expression for selected experiments.

Signals
Inputs:

Data

Data set.

Outputs:

Selected data

Data subset.

Description
This widget plots a differential gene expression graph for a sample target. It takes gene expression data as an input
(from dictyExpress, PIPAx, etc.) and outputs a selected data subset (normally the most interesting genes).

1. Information of the data input and output. The first line shows the number of samples and genes in the data set.
The second line displays the selected sample target (read around which the graph is plotted). The third line shows

http://www.ncbi.nlm.nih.gov/books/NBK10061/

the number of undefined gene (missing data) and the fourth the number of genes in the output.
2. Select the plotting method in Scoring method:

Fold change: final to initial value ratio
log2 (fold change): binary logarithmic transformation of fold change values
T-test: parametric test of null hypothesis
T-test (P-value): parametric test of null hypothesis with P-value as criterium
ANOVA: variance distribution
ANOVA (P-value): variance distribution with P-value as criterium
Signal to Noise Ratio: biological signal to noise ratio
Mann-Whitney: non-parametric test of null hypothesis with P-value as criterium

3. Select Target Labels. Labels depend on the attributes in the input. In Values you can change the sample target
(default value is the first value on the list, alphabetically or numerically).

4. Selection box controls the output data.

By setting the Lower threshold and Upper threshold values you are outputting the data outside this interval
(the most interesting expression levels). You can also manually place the threshold lines by dragging left or
right in the plot.
If you click Compute null distribution box, the widget will calculate null distribution and display it in the
plot. Permutations field allows you to set the precision of null distribution (the more permutations the more
precise the distribution), while

α

-value will be the allowed probability of false positives. Press Select to output this data.

The final option is to set the number of best ranked genes and output them with Select.

1. When Auto commit is on is ticked, the widget will automatically apply the changes. Alternatively press Commit. If
the Add gene scores to output is ticked, the widget will append an additional column with gene scores to the data.

Example
In the example below we chose two experiments from the PIPAx widget (8 experiments measuring gene expression
levels on Dictyostelium discoideum at different timepoints) and observed them in the Data Table. Then we used the
Differential Expression widget to select the most interesting genes. We left upper and lower threshold at default
(1 and -1) and output the data. Then we observed the selected data in another Data Table. As we have ticked the Add
gene scores to output, the table shows an additional column with gene scores as instances.

https://en.wikipedia.org/wiki/Fold_change
https://en.wikipedia.org/wiki/Student%27s_t-test#Independent_two-sample_t-test
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Analysis_of_variance
https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors#Type_I_error

! v: latest "

Expression Profile Distances

Computes distances between gene expression levels.

Signals
Inputs:

Data

Data set.

Outputs:

Distances

Distance matrix.

Sorted Data

Data with groups as attributes.

Description
Widget Expression Profile Distances computes distances between expression levels among groups of data.
Groups are data clusters set by the user through separate by function in the widget. Data can be separated by one or
more variable labels (usually timepoint, replicates, IDs, etc.). Widget outputs distance matrix that can be fed into
Distance Map and Hierarchical Clustering widgets.

1. Information on the input data.
2. Separate the experiments into groups by labels (normally timepoint, replicates, data name, etc.).
3. Sort the experiments inside the group by labels.
4. Choose the Distance Measure:

Pearson (linear correlation between the values, remapped as a distance in a [0, 1] interval)
Euclidean (“straight line”, distance between two points)
Spearman (linear correlation between the rank of the values, remapped as a distance in a [0, 1] interval)

5. If Auto commit is on, the widget will automatically compute the distances and output them. Alternatively click
Commit.

6. This snapshot shows 4 groups of experiments (tp=0, tp=6, tp=12, tp=18) with 2 experiments (replicates) in each
group.

Example
Expression Profile Distances widget is used to calculate distances between gene expression values sorted by la-
bels. We chose 8 experiments measuring gene expression levels on Dictyostelium discoideum at different timepoints.
In the Expression Profile Distances widget we separated the data by timepoint and sorted them by replicates.
We could see the grouping immediately in the Groups box on the right. Then we fed the results to Distance Map
and Hierarchical Clustering to visualize the distances and cluster the attributes.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient

! v: latest "

Gene Info

Displays information on the genes in the input.

Signals
Inputs:

Data

Data set.

Outputs:

Selected Data

Instances with meta data that the user has manually selected in the widget.

Description
A useful widget that presents information on the genes from the NCBI database. You can also select a subset and feed
it to other widgets. By clicking on the gene NCBI ID in the list, you will be taken to the NCBI site with the information
on the gene.

1. Information on data set size and genes that matched the NCBI ID’s.
2. Select the organism of reference.
3. Set the source of gene names. If your gene names are placed as attributes names, select Use attribute names.
4. If Auto commit is on, changes will be communicated automatically. Alternatively click Commit.
5. In the row above the list you can filter the genes by search word(s). If you wish to output the filtered data, click

Select Filtered.
6. If you wish to start from scratch, click Clear Selection.

Example
Below we first view the entire Caffeine effect: time course and dose response data set in the Data Table widget. Then
we feed the same data into the Gene Info, where we select only the genes that are located on the 11th chromosome.
We can observe these data in another Data Table, where additional information on the selected genes are appended

http://www.ncbi.nlm.nih.gov/gene

as meta attributes.

! v: latest "

GenExpress

Gives access to GenExpress databases.

Signals
Inputs:

(None)

Outputs:

Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding op-
tion is chosen, the average of multiple replicates.

Description
GenExpress is a widget for a direct access to GenExpress database. It is very similar to the PIPAx and GEO
Data Sets widgets as it allows you to download the data from selected experiments.

https://www.genialis.com/genexpress/
https://www.genialis.com/genexpress/

1. Choose a projects to source your data from.
2. Use Selection bookmarks to save a selection: select experiments, click the “+” button and name the set. To add

experiments to your set, click on the set name, select additional experiments and click Update. To remove the set
click “-”.

3. In Sort output columns set the attributes by which the output columns are sorted. Add attributes with a “+” but-
ton and remove them with “-”. Switch the sorting order with arrows on the right.

4. Set the expression type for your output data.

Expression RPKM outputs data in reads per kilobase of transcript per million mapped reads
Expression RPKUM outputs only RPKUM data.
Read counts (raw) outputs raw read count data.
The polyA variants use only polyA (mRNA) mapped hits.

5. Exclude labels with constant values removes labels that are the same for all selected experiments.
Average replicates (use median) averages identical experiments by using medians as values.
Logarithmic (base 2) transformation returns log2(value+1) for each value.

6. Click Commit to output selected data.
7. Select the server you wish to access the data from. Log in to access private data.
8. Clear cache removes the uploaded data sets from internal memory.
9. Experiments can be filtered with the Search box. To select which attributes to display right-click on the header.

To select multiple experiments click them while holding the Control/Command key.

Example
In the schema below we connected GenExpress to Data Table to view the gene expression reads and then to Scat-
ter Plot, where we chose to view expression levels from two experiments. In the plot we select an outlier and view it
in another Data Table.

! v: latest "

GEO Data Sets

Provides access to data sets from gene expression omnibus (GEO DataSets).

Signals
Inputs:

(None)

Outputs:

Data

Data set selected in the widget with genes or samples in rows.

Description
GEO DataSets is a data base of gene expression curated profiles maintained by NCBI and included in the Gene Ex-
pression Omnibus. This Orange widget provides access to all its data sets and outputs a data set selected for further
processing. For convenience, each dowloaded data set is stored locally.

1. Information on the GEO data set collection. Cached data sets are the ones currently stored on the computer.
2. Output features. If Genes or spots is selected, genes (or spots) will be used as attributes. Alternatively samples

will be used as attributes. Merge spots of same gene averages measures of the same gene. Finally, in the Data set
name you can rename the output data. GEO title will be used as a default name.

3. If Auto commit is on, then the selected data set will be automatically communicated to other widgets. Alterna-
tively, click Commit.

4. Filter allows you to search for the data set. Below you see a list of GEO data sets with an ID number (link to the
NCBI Data Set Browser), title, organism used in the experiment, number of samples, features, genes, subsets and
a reference number for the PubMed journal (link to the article abstract).

5. Short description of the experiment from which the data set is sourced.

http://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/info/datasets.html

6. Select which Sample Annotations will be used in the output.

Example
GEO Data Sets is similar to the File widget. In the example below we selected Caffeine effect: time dose and re-
sponse data set from the GEO data base and used Genes or spots as attributes. We inspected the data in Data Table.
Then we selected 3 genes in the Select Columns widget for a detailed analysis in another data table.

! v: latest "

GO Browser

Provides access to Gene Ontology database.

Signals
Inputs:

Cluster Data

Data on clustered genes.

Reference Data

Data with genes for the reference set (optional).

Outputs:

Data on Selected Genes

Data on genes from the selected GO node.

Data on Unselected Genes

Data on genes from GO nodes that weren’t selected.

Data on Unknown Genes

Data on genes that are not in the GO database.

Enrichment Report

Data on GO enrichment analysis.

Description
GO Browser widget provides access to Gene Ontology database. Gene Ontology (GO) classifies genes and gene
products to terms organized in a graph structure called an ontology. The widget takes any data on genes as an input
(it is best to input statistically significant genes, for example from the output of the Differential Expression wid-
get) and shows a ranked list of GO terms with p-values. This is a great tool for finding biological processes that are
over- or under-represented in a particular gene set. The user can filter input data by selecting terms in a list.

http://geneontology.org/

INPUT tab

1. Information on the input data set. Ontology/Annotation Info reports the current status of the GO database.
2. Select organism for the GO term analysis.
3. Use this attribute to extract gene names for the input data. You can use attribute names as gene names and adjust

gene matching in the Gene matcher settings box.
4. Select the reference. You can either have the entire genome as reference or a reference set from the input.
5. Select the ontology where you want to calculate the enrichment. There are three Aspect options:

Biological process
Cellular component
Molecular function

6. A ranked tree (upper pane) and list (lower pane) of GO terms for the selected aspect:

GO term
Cluster: number of genes from the input that are also annotated to a particular GO term (and its proportion
in all the genes from that term).
Reference: number of genes that are annotated to a particular GO term (and its proportion in the entire
genome).
P-value: probability of seeing as many or more genes at random. The closer the p-value is to zero, the more
significant a particular GO term is. Value is written in e notation.
FDR: false discovery rate - a multiple testing correction that means a proportion of false discoveries among
all discoveries up to that FDR value.
Genes: genes in a biological process.
Enrichment level

http://geneontology.org/page/biological-process-ontology-guidelines
http://geneontology.org/page/cellular-component-ontology-guidelines
http://geneontology.org/page/molecular-function-ontology-guidelines
https://en.wikipedia.org/wiki/Scientific_notation#E_notation
https://en.wikipedia.org/wiki/False_discovery_rate
http://geneontology.org/page/go-enrichment-analysis

FILTER tab

1. Filter GO Term Nodes by:

Genes is a minimal number of genes mapped to a term
P-value is a max term p-value
FDR: is a max term false discovery rate

2. Significance test specifies distribution to use for null hypothesis:

Binomial: use a binomial distribution
Hypergeometric: use a hypergeometric distribution

3. Evidence codes in annotation show how the annotation to a particular term is supported.

SELECT tab

1. Annotated genes outputs genes that are:

Directly or Indirectly annotated (direct and inherited annotations)
Directly annotated (inherited annotations won’t be in the output)

2. Output:

All selected genes: outputs genes annotated to all selected GO terms
Term-specific genes: outputs genes that appear in only one of selected GO terms
Common term genes: outputs genes common to all selected GO terms
Add GO Term as class: adds GO terms as class attribute

https://en.wikipedia.org/wiki/False_discovery_rate
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Hypergeometric_distribution
http://geneontology.org/page/guide-go-evidence-codes

Example
In the example below we have used GEO Data Sets widget, in which we have selected Caffeine effects: time course
and dose response data set, and connected it to a Differential Analysis. Differential analysis allows us to select
genes with the highest statistical relevance (we used ANOVA scoring) and feed them to GO Browser. This widget
lists four biological processes for our selected genes. Say we are interested in finding out more about monosaccharide
transport as this term has a high enrichment rate. To learn more about which genes are annotated to this GO term
we view it in the Data Table, where we see all the genes participating in this process listed.

! v: latest "

KEGG Pathways

Diagrams of molecular interactions, reactions, and relations.

Signals
Inputs:

Data

Data set.

Reference

Referential data set.

Outputs:

Selected Data

Data subset.

Unselected Data

Remaining data.

Description
KEGG Pathways widget displays diagrams of molecular interactions, reactions and relations from the KEGG Path-
ways Database. It takes data on gene expression as an input, matches the genes to the biological processes and dis-
plays a list of corresponding pathways. To explore the pathway, the user can click on any process from the list or
arrange them by P-value to get the most relevant processes at the top.

http://www.genome.jp/kegg/pathway.html

1. Information on the input and the ratio of matched genes.
2. Select the organism for term analysis. The widget automatically selects the organism from the input data.
3. Set the attribute to use for gene names. If gene names are your attribute names, tick Use variable names.
4. If you have a separate reference set in the input, tick From signal to use these data as reference.
5. To have pathways listed and displayed by vertical descent, tick Show pathways in full orthology.
6. To fit the image to screen, tick Resize to fit. Untick the box if you wish to explore the pathways.
7. To clear all locally cached KEGG data, press Clear cache.
8. When Auto commit is on, the widget will automatically apply the changes. Alternatively press Commit.
9. A list of pathways either as processes or in full orthology. Click on the process to display the pathway. You can

sort the data by P-value to get the most relevant results at the top.

Example ! v: latest "

MA Plot

Visualization of intensity-dependent ratios of raw microarray data.

Signals
Inputs:

Expression Array

DNA microarray.

Outputs:

Normalized Expression Array

Lowess-normalized microarray.

Filtered Expression Array

Selected instances (in the Z-score cutoff).

Description
MA Plot is a graphical method for visualizing intensity-dependent ratio of raw mircoarray data. The A represents the
average log intensity of the gene expression (x-axis in the plot), while M stands for the binary log of intensity ratio (y-
axis). The widget outputs either normalized data (Lowess normalization method) or instances above the Z-score cut-
off line (instances with meaningful fold changes).

1. Information on the input data.
2. Select the attribute to split the plot by.
3. Center the plot using:

https://en.wikipedia.org/wiki/MA_plot

average
Lowess (fast-interpolated) normalization method
Lowess normalization method

4. Merge replicated by:

average
median
geometric mean

5. Set the Z-score cutoff threshold. Z-score is your confidence interval and it is set to 95% by default. If the widget
is set to output filtered expression array, instances above the Z-score threshold will be in the output (red dots in
the plot).

6. Ticking the Append Z-scores will add an additional meta attribute with Z-scores to your output data.
Ticking the Append Log ratio and Intensity values will add two additional meta attributes with M and A values
to your output data.

7. If Auto commit is on, the widget will automatically apply changes to the output. Alternatively click Commit.

Example
MA Plot is a great widget for data visualization and selection. First we select Caffeine effect: time course and dose
response data from the GEO Data Sets widget and feed it to MA Plot. In the plot we see intensity ratios for a se-
lected experiment variable.

We often need to normalize the experiment data to avoid systematic biases, thus we select Lowess (fast-interpolated)
in the Center Fold-change box. By ticking both boxes in the Output subsection, we get three new meta attributes ap-
pended - Z-score, Log ratio and Intensity. We see these new attributes and normalized instances in the Data Table
(normalized).

Another possible output for the MA plot widget is Filtered expression array, which will give us instances above the Z-
score cutoff threshold (red dots in the plot). We observe these instances the Data Table (filtered).

https://en.wikipedia.org/wiki/Local_regression
https://en.wikipedia.org/wiki/Standard_score

! v: latest "

PIPAx

Gives access to PIPA databases.

Signals
Inputs:

(None)

Outputs:

Data

Selected experiments. Each annotated column contains results of a single experiment or, if the corresponding op-
tion is chosen, the average of multiple replicates.

Description
PIPAx is a widget for a direct access to PIPA database. It is very similar to the GenExpress and GEO Data Sets
widgets as it allows you to download the data from selected experiments.

http://pipa.biolab.si/hp/index.html#
http://pipa.biolab.si/hp/index.html#

1. Reloads the experiment data.
2. The widget will save (cache) downloaded data, which makes them also available offline. To reset the widget click

Clear cache.
3. Use Experiment Sets to save a selection: select the experiments, click the “+” button and name the set. To add ex-

periments to the set, click on its name, select additional experiments and click Update.
To remove the set click “-”.

4. In Sort output columns set the attributes by which the output columns are sorted. Add attributes with a “+” but-
ton and remove them with “-”. Switch the sorting order with arrows on the right.

5. Set the expression type for your output data.

Raw expression outputs raw experiment data
RPKM expression outputs data in reads per kilobase of transcript per million mapped reads
RPKM expression + mapability expression uses similar normalization, but divides with gene mapabili-
ty instead of exon lengths.
The polyA variants use only polyA (mRNA) mapped hits.

6. Exclude labels with constant values removes attribute labels that are the same for all selected experiments
from the output data.
Average replicates (use median) averages identical experiments by using medians as values.
Logarithmic (base 2) transformation computes the log2(value+1) for each value.

7. Click Commit to output selected experiments.
8. Log in to access private data.
9. Experiments can be filtered with the Search box. To select which attributes to display right-click on the header.

To select multiple experiments click them while holding the Control/Command key.

Example
In the schema below we connected PIPAx to Data Table, Set Enrichment, and Distance Map (through Dis-
tances) widgets.

The Data Table widget above contains the output from the PIPAx widget. Each column contains gene expressions
of a single experiment. The labels are shown in the table header. The Distance Map widget shows distances be-
tween experiments. The distances are measured with Distance widget, which was set to compute Euclidean
distances. ! v: latest "

Quality Control

Computes and plots distances between experiments or replicates.

Signals
Inputs:

Data

Data set.

Outputs:

(None)

Description
Quality Control measures distances between experiments (usually replicates) for a selected label. The widget visu-
alizes distances by selected label. Experiments that lie the farthest from the initial black line should be inspected for
anomalies.

1. Information on the input.

2. Separate experiments by label.
3. Sort experiments by label.
4. Compute distances by:

Pearson correlation
Euclidean distances
Spearman correlation

5. Hover over the vertical line to display the information on a chosen instance. Click on the black line to change the
reference to that instance.

Example
Quality Control widget gives us feedback on the quality of our data and can be connected to any widget with data
output. In the example above (see the image under Description) we fed 9 experiments of Cyclic AMP pulsing of Dic-
tyostelium discoideum from GenExpress widget into Quality Control and separated them by timepoint label. We
found replicate 2 from tp 2 among the tp 1 data, meaning we should inspect these data further. ! v: latest "

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Select Genes

Manual selection of gene subset.

Signals
Inputs:

Data

Data set.

Gene Subset

A subset of genes to be used for gene selection (optional).

Outputs:

Selected Data

A subset of genes selected in the widget.

Description
Select Genes widget is used to manually create the gene subset. There are three ways to select genes:

Manual gene selection (written input). The widget supports autocompletion for gene names.
Selecting genes from gene sets in the “+” option.
Selecting genes from a separate input (input can be adjusted in the widget).

1. Select Gene Attribute if there is more than one column with gene names.
2. Specify how you want to select your genes: Select Genes from ‘Gene Subset’ input adds genes from the separate

input to selected genes. To create a new saved selection, click Copy genes to saved subsets. The genes will be list-
ed in Select Genes text area below. To add these genes to an existing selection, click Append genes to current
saved selection.

3. In Select specified genes you can type the gene name and the widget will automatically suggest corresponding
genes. Genes that match the genes in the input will be colored blue, while the unmatched will remain black.

4. The “+” button has a drop-down menu with two options.

Import names from gene sets... gives a list of gene sets and copies genes from selected sets into the list.
Import names from text files... imports gene names from the file.

5. More has two settings: Complete on gene symbol names (for easier gene selection) and Translate all names to
official symbol names (for uniformity).

6. Set the organism to select the genes from (organism from the input data is chosen as default).
7. Saved Selections saves the most frequently used genes. “+” adds a new selection, “-” removes the existing one,

and Save saves the current list. Double-click the selection to rename it.
8. Output for this widget is a data subset. If you wish to preserve the order of instances from your input data, tick

the Preserve input order box. If Auto commit is on, all changes will be communicated automatically. Alternative-
ly press Commit.

Below is a screenshot of the Import Gene Set Names option.

Example
Below is a very simple workflow for this widget. We selected AX4 Dictyostelium discoideum data from different time
points and two different replicates from PIPAx widget. In Select Genes we used the Import names from gene
sets... option and selected two mRNA processes that gave us a list of genes you can see in the Select Genes box. Then
we fed these data into the Data Table. There are 125 genes in the entire AX4 Dictyostelium discoideum data that are
present in the selected mRNA processes.

! v: latest "

Set Enrichment

Determines statistically significant differences in expression levels for biological processes.

Signals
Inputs:

Data

Data set.

Reference

Data with genes for the reference set (optional).

Outputs:

Selected data

Data subset.

Description
The widget shows a ranked list of terms with p-values, FDR and enrichment. Set Enrichment is a great tool for
finding biological processes that are over-represented in a particular gene or chemical set.

Sets from (GO, KEGG, miRNA and MeSH) come with the Orange installation.

1. Information on the input data set and the ratio of genes that were found in the databases.
2. Select the species.
3. Entity names define the features in the input data that you wish to use for term analysis. Tick Use feature names

https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/False_discovery_rate
https://en.wikipedia.org/wiki/Gene_set_enrichment
http://geneontology.org/
http://www.genome.jp/kegg/
http://www.mirbase.org/
http://www.nlm.nih.gov/mesh/MBrowser.html

if your genes or chemicals are used as attribute names rather than as meta attributes.
4. Select the reference data. You can either have entities (usually genes from the organism - All Entities) as a refer-

ence or a reference set from the input.
5. Select which Entity sets you wish to have displayed in the list.
6. When Auto commit is on, the widget will automatically apply the changes. Alternatively press Commit.
7. Filter the list by:

the minimum number of entities included in each term
the minimum threshold for p-value
the maximum threshold for false discovery rate
a search word

Example
In the example below we have decided to analyse gene expression levels from Caffeine effect: time course and dose
response data set. We used the ANOVA scoring in the Differential Expression widget to select the most interest-
ing genes. Then we fed those 628 genes to Set Enrichment for additional analysis of the most valuable terms. We
sorted the data by FDR values and selected the top-scoring term. Heat Map widget provides a nice visualization of
the data.

! v: latest "

Volcano Plot

Plots significance versus fold-change for gene expression rates.

Signals
Inputs:

Data

Input data set.

Outputs:

Selected data

Data subset.

Description
Volcano plot is a graphical method for visualizing changes in replicate data. The widget plots a binary logarithm of
fold-change on the x-axis versus statistical significance (negative base 10 logarithm of p-value) on the y-axis.

Volcano Plot is useful for a quick visual identification of statistically significant data (genes). Genes that are highly
dysregulated are farther to the left and right, while highly significant fold changes appear higher on the plot. A com-
bination of the two are those genes that are statistically significant - the widget selects the top-ranking genes within
the top right and left fields by default.

1. Information on the input and output data.
2. Select Target Labels. Labels depend on the attributes in the input. In Values you can change the sample target

(default value is the first value on the list, alphabetically or numerically).
3. Change the Settings: adjust the symbol size and turn off symmetrical selection of the output data (the widget se-

https://en.wikipedia.org/wiki/Volcano_plot_(statistics)
https://en.wikipedia.org/wiki/Statistical_significance

lects statistically significant instances by default).
4. If Auto commit is on the widget will automatically apply the changes. Alternatively click Commit.
5. Visualization of the changes in gene expression. The red lines represent the area with the most statistically signif-

icant instances. Symmetrical selection is chosen by default, but you can also manually adjust the area you want in
the output.

Example
Below you can see a simple workflow for Volcano Plot. We use Caffeine effect: time course and dose response data
from GEO Data Sets widget and visualize them in a Data Table. We have 6378 gene in the input, so it is essential
to prune the data and analyse only those genes that are statistically significant. Volcano Plot helps us do exactly
that. Once the desired area is selected in the plot, we output the data and observe them in another Data Table. Now
we get only 80 instances, which were those genes that had a high normalized fold change under high dose of caffeine
and had a low p-value at the same time.

! v: latest "

Association RulesAssociation Rules

Induction of association rules.

SignalsSignals

InputsInputs

Data

Data set

OutputsOutputs

Matching Data

Data instances matching the criteria.

DescriptionDescription

This widget implements FP-growth [1] frequent pattern mining algorithm with bucketing optimization [2]
for conditional databases of few items. For inducing classification rules, it generates rules for the entire
itemset and skips the rules where the consequent does not match one of the class’ values.

https://en.wikipedia.org/wiki/Association_rule_learning

1. Information on the data set.

2. In Find association rules you can set criteria for rule induction:

Minimal support: percentage of the entire data set covered by the entire rule (antecedent
and consequent).
Minimal confidence: proportion of the number of examples which fit the right side (con-
sequent) among those that fit the left side (antecedent).
Max. number of rules: limit the number of rules the algorithm generates. Too many rules
can slow down the widget considerably.

If Induce classification (itemset → class) rules is ticked, the widget will only generate rules that
have a class value on the right-hand side (consequent) of the rule.

If Auto find rules is on, the widget will run the search at every change of parameters. Might be
slow for data sets with many attributes, so pressing Find rules only when the parameters are set
is a good idea.

3. Filter rules by:

Antecedent:

Contains: will filter rules by matching space-separated regular expressions in
antecedent items.
Min. items: minimum number of items that have to appear in an antecedent.
Max. items: maximum number of items that can appear in an antecedent.

Consequent:

Contains: will filter rules by matching space-separated regular expressions in
consequent items.
Min. items: minimum number of items that have to appear in a consequent.
Max. items: maximum number of items that can appear in a consequent.

If Apply these filters in search is ticked, the widget will limit the rule generation only to rules that
match the filters. If unchecked, all rules are generated, but only the matching are shown.

4. If Auto send selection is on, data instances that match the selected association rules are output au-
tomatically. Alternatively press Send selection.

ExampleExample

Association Rules can be used directly with the File widget.

https://en.wikipedia.org/wiki/Regular_expression

References and further readingReferences and further reading

[1]: J. Han, J. Pei, Y. Yin, R. Mao. (2004) Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach.

[2]: R. Agrawal, C. Aggarwal, V. Prasad. (2000) Depth first generation of long patterns.

On how to use regular expressions.
! v: latest "

https://www.cs.sfu.ca/~jpei/publications/dami03_fpgrowth.pdf
http://www.cs.tau.ac.il/~fiat/dmsem03/Depth%20First%20Generation%20of%20Long%20Patterns%20-%202000.pdf
http://regexr.com/

Frequent ItemsetsFrequent Itemsets

Finds frequent itemsets in the data.

SignalsSignals

InputsInputs

Data

Data set

OutputsOutputs

Matching Data

Data instances matching the criteria.

DescriptionDescription

The widget finds frequent items in a data set based on a measure of support for the rule.

https://en.wikipedia.org/wiki/Association_rule_learning

1. Information on the data set. ‘Expand all’ expands the frequent itemsets tree, while ‘Collapse all’
collapses it.

2. In Find itemsets by you can set criteria for itemset search:

Minimal support: a minimal ratio of data instances that must support (contain) the item-
set for it to be generated. For large data sets it is normal to set a lower minimal support
(e.g. between 2%-0.01%).
Max. number of itemsets: limits the upward quantity of generated itemsets. Itemsets are
generated in no particular order.

If Auto find itemsets is on, the widget will run the search at every change of parameters. Might
be slow for large data sets, so pressing Find itemsets only when the parameters are set is a
good idea.

3. Filter itemsets:

If you’re looking for a specific item or itemsets, filter the results by regular expressions. Separate
regular expressions by comma to filter by more than one word.

Contains: will filter itemsets by regular expressions.
Min. items: minimum number of items that have to appear in an itemset. If 1, all the item-
sets will be displayed. Increasing it to, say, 4, will only display itemsets with four or more
items.
Max. items: maximum number of items that are to appear in an itemset. If you wish to
find, say, only itemsets with less than 5 items in it, you’d set this parameter to 5.

https://en.wikipedia.org/wiki/Regular_expression

If Apply these filters in search is ticked, the widget will filter the results in real time. Preferably
not ticked for large data sets.

4. If Auto send selection is on, changes are communicated automatically. Alternatively press Send
selection.

ExampleExample

Frequent Itemsets can be used directly with the File widget.

! v: latest "

