

Corso integrato di Sistemi di Elaborazione

Modulo

Prof. Crescenzio Gallo

crescenzio.gallo@unifg.it

Algebra relazionale

Algebra relazionale

- Introduzione
- Selezione e proiezione
- Prodotto cartesiano e join
- Natural join, theta-join e semi-join
- Outer join
- Unione e intersezione
- Differenza e anti-join
- Divisione e altri operatori

Introduzione

Algebra relazionale

- Estende l'algebra degli insiemi per il modello relazionale
- Definisce un insieme di operatori che operano su relazioni e producono come risultato una relazione
- Gode della proprietà di chiusura
 - il risultato di qualunque operazione algebrica su relazioni è a sua volta una relazione

Operatori dell'algebra relazionale

Operatori unari

- $selezione(\mathbf{\sigma})$
- proiezione (π)

• Operatori binari

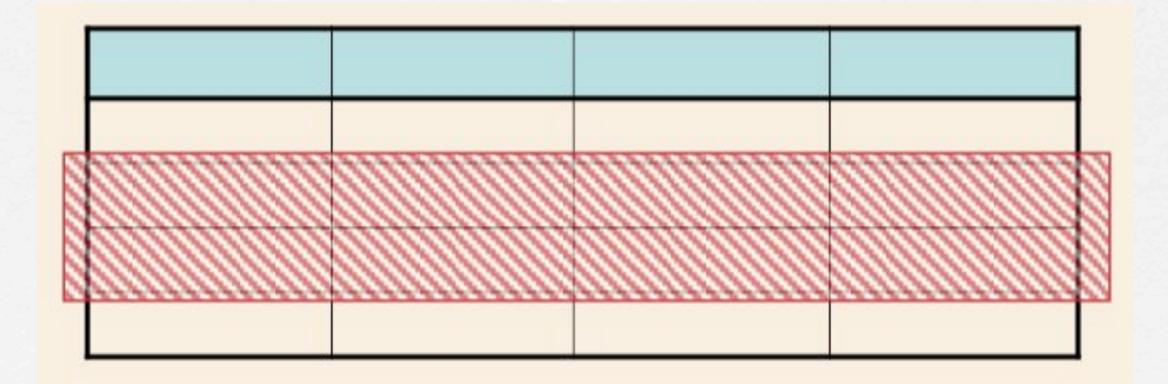
- prodotto cartesiano (X)
- $join(\bowtie)$
- unione (U)
- $intersezione(\cap)$
- differenza (**–** oppure ****)
- divisione (/)

• Operatori insiemistici

- unione (U)
- $intersezione(\cap)$
- differenza (**–** oppure ****)
- prodotto cartesiano (X)

• Operatori relazionali

- selezione (**o**)
- proiezione (π)
- $join(\bowtie)$
- divisione (/)



Selezione e Proiezione

Selezione

• La selezione estrae un sottoinsieme "orizzontale" della relazione (estrae righe della tabella).

Selezione: definizione

$$R = \sigma_p(A)$$

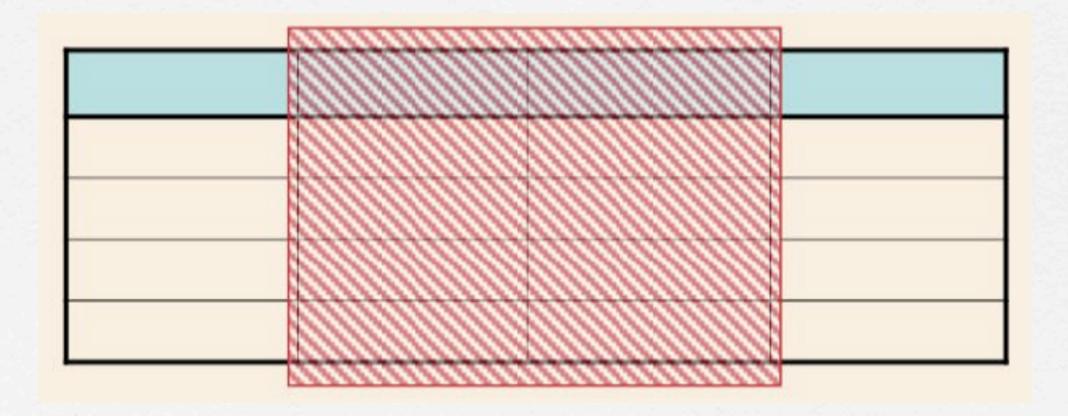
- La selezione genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le n-uple della relazione A per cui è vero il predicato p
- Il predicato p è un'espressione booleana di confronti tra attributi e/o costanti
 - p: (Città='Torino') \land (Età>18)
 - p: DataRestituzione > DataConsegna+10

Selezione: esempio

Trovare i corsi tenuti nel secondo semestre

$$R = \sigma_{Semestre=2}$$
Corsi

R
II
OSemestre=2
Corsi


Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

• La proiezione estrae un sottoinsieme "verticale" della relazione (estrae colonne della tabella).

Proiezione: definizione

$$R=\pi_d(A)$$

- La proiezione genera una relazione R
 - avente come schema la lista di attributi "d" (sottoinsieme dello schema di A)
 - contenente tutte le n-uple della relazione A
- Sono eliminati gli eventuali duplicati dovuti all'esclusione degli attributi non presenti in d
 - se d include una chiave candidata, non vi sono duplicati

Proiezione: esempio 1

Trovare il nome dei docenti

R π_{NomeDoc} Docenti

 $R = \pi_{NomeDoc}Docenti$

Docenti

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Proiezione: esempio 2

Trovare il nome dei dipartimenti in cui è presente almeno un docente: $R = \pi_{Dipartimento}$ (Docenti)

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

Dipartimento
Informatica
Elettronica

Selezione+proiezione: esempio

Trovare il nome dei corsi del secondo semestre

Innanzitutto
occorre
selezionare i
corsi del
secondo
semestre...

I	Codice	NomeCorso	Semestre	MatrDocente
I	M2170	Informatica 1	1	D102
Į	M4880	Sistemi digitali	2	D104
I	F1401	Elettronica	1	D104
Į	F0410	Basi di dati	2	D102

Selezione

Codice	NomeCorso	Semestre	MatrDocente	
M4880	Sistemi digitali	2	D104	
F0410	Basi di dati	2	D102	

Selezione+proiezione: esempio

...quindi
proiettare
l'attributo
NomeCorso,
ottenendo la
relazione
finale
desiderata.

Codice	NomeCorso	Semestre	MatrDocente
M4880	Sistemi digitali	2	D104
F0410	Basi di dati	2	D102

Proiezione

R

NomeCorso

Sistemi digitali

Basi di dati

Selezione+proiezione: esempio

$$R = \sigma_{Semestre=2} (\pi_{NomeCorso} Corsi)$$

R
||
σ_{Semestre=2}
π_{NomeCorso}
|
Corsi

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Selezione+proiezione: esempio (corretto?)

$$R = \sigma_{Semestre=2} (\pi_{NomeCorso} Corsi)$$

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Selezione+proiezione: soluzione errata

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Proiezione

NomeCorso

Informatica 1

Sistemi digitali

Elettronica

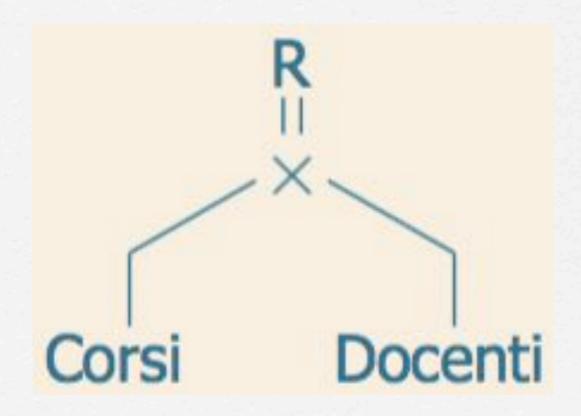
Basi di dati

Selezione+proiezione: soluzione errata

- L'attributo Semestre non esiste più, quindi non è possibile eseguire l'operazione di selezione
- Perciò l'<u>ordine</u> delle operazioni è importante

Prodotto cartesiano e Join

Prodotto cartesiano: definizione


$$R = A \times B$$

- Il prodotto cartesiano di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e di B
 - contenente tutte le coppie formate da una n-upla di A e una n-upla di B
- Il prodotto cartesiano è
 - commutativo: $A \times B = B \times A$
 - associativo: $(A \times B) \times C = A \times (B \times C)$

Prodotto cartesiano: esempio

Trovare il prodotto cartesiano tra Corsi e Docenti

Prodotto cartesiano: esempio

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. Matroocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1 (D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join

• Il join di due relazioni A e B genera tutte le coppie formate da una n-upla di A e una n-upla di B "semanticamente legate"

R legame tra attributi						
Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. Matroocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1 (D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica

Join: definizione

- Il join è un operatore derivato
 - può essere espresso utilizzando gli operatori \times , σ_p , π_d
- Il join è definito separatamente perché esprime sinteticamente molte operazioni ricorrenti nelle interrogazioni
- Esistono diversi tipi di join
 - natural join
 - theta-join (e il suo sottocaso equi-join)
 - semi-join

Join: esempio

Trovare le informazioni sui corsi e sui docenti che li tengono

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Docenti

<u>MatrDocente</u>	NomeDoc	Dipartimento		
D102	Verdi	Informatica		
D105	Neri	Informatica		
D104	Bianchi	Elettronica		

Join: esempio

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M2170	Informatica 1	1	D102	D105	Neri	Informatica
M2170	Informatica 1	1	D102	D104	Bianchi	Elettronica
M4880	Sistemi digitali	2	D104	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D105	Neri	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D102	Verdi	Informatica
F1401	Elettronica	1	D104	D105	Neri	Informatica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica
F0410	Basi di dati	2	D102	D105	Neri	Informatica
F0410	Basi di dati	2	D102	D104	Bianchi	Elettronica

Join: esempio

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica

• **Nota bene**: il docente (**D 1 D 5**, **NERI, INFORMATICA)**, che non tiene alcun corso, non compare nel risultato del join.

Natural join, thetajoin e semi-join

Natural join: definizione

 $R = A \bowtie B$

- Il natural join di due relazioni A e B genera una relazione R, avente come schema
 - gli attributi presenti nello schema di A e non presenti nello schema di B
 - gli attributi presenti nello schema di $oldsymbol{B}$ e non presenti nello schema di A
 - una sola copia degli attributi comuni (con lo stesso nome nello schema di A e di B)

contenente tutte le coppie costituite da una n-upla di A e una n-upla di B per cui il valore degli attributi comuni è uguale

• Il natural join è commutativo e associativo

Natural join: esempio

R = Corsi № Docenti

Corsi

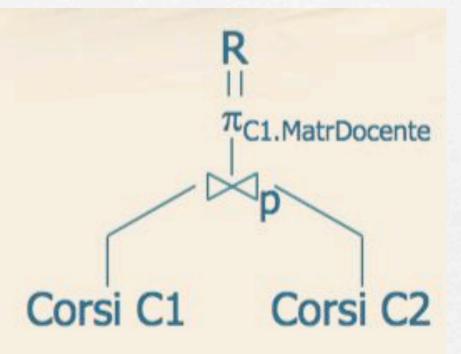
Docenti

R

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	MatrDocente	Docenti. NomeDoc	Docenti. Diparimento
M2170	Informatica 1	1	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	Verdi	Informatica

Nota bene: l'attributo comune MatrDocente è presente una volta sola nello schema della relazione risultante R

Theta-join: definizione


$$R = A \bowtie_p B$$

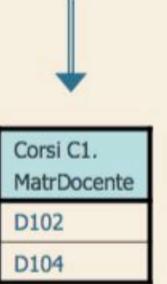
- Il theta-join di due relazioni A e B genera una relazione R
 - avente come schema l'unione degli schemi di A e B
 - contenente tutte le coppie costituite da una n-upla di A e una n-upla di B per cui è vero il predicato p
- Il predicato p è nella forma $X \theta Y$, dove
 - Xè un attributo di A, Yè un attributo di B
 - θ è un operatore di confronto compatibile con i domini di X e Y
- Il theta-join è commutativo e associativo

Theta-join: esempio

Trovare la matricola dei docenti che sono titolari di almeno due corsi

p: C1.MatrDocente=C2.MatrDocente ^ C1.Codice<>C2.Codice

 $R = \pi_{C1.MatrDocente}((Corsi C1) \bowtie_p (Corsi C2))$


Theta-join: esempio

	Corsi C1. Codice	Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
	M2170	Informatica 1	1	D102	M2170	Informatica 1	1	D102
	M2170	Informatica 1	1	D102	M4880	Sistemi digitali	2	D104
	M2170	Informatica 1	1	D102	F1401	Elettronica	1	D104
	M2170	Informatica 1	1	D102	F0410	Basi di dati	2	D102
	M4880	Sistemi digitali	2	D104	M2170	Informatica 1	1	D102
	M4880	Sistemi digitali	2	D104	M4880	Sistemi digitali	2	D104
	M4880	Sistemi digitali	2	D104	F1401	Elettronica	1	D104
	M4880	Sistemi digitali	2	D104	F0410	Basi di dati	2	D102
	F1401	Elettronica	1	D104	M2170	Informatica 1	1	D102
	F1401	Elettronica	1	D104	M4880	Sistemi digitali	2	D104
	F1401	Elettronica	1	D104	F1401	Elettronica	1	D104
	F1401	Elettronica	1	D104	F0410	Basi di dati	2	D102
	F0410	Basi di dati	2	D102	M2170	Informatica 1	1	D102
	F0410	Basi di dati	2	D102	M4880	Sistemi digitali	2	D104
P	F0410	Basi di dati	2	D102	F1401	Elettronica	1	D104
1	E0410	Basi di dati	2	D102	F0410	Basi di dati	2	D102

Theta-join: esempio

Corsi C1. NomeCorso	Corsi C1. Semestre	Corsi C1. MatrDocente	Corsi C2. Codice	Corsi C2. NomeCorso	Corsi C2. Semestre	Corsi C2. MatrDocente
Informatica 1	1	D102	F0410	Basi di dati	2	D102
Sistemi digitali	2	D104	F1401	Elettronica	1	D104
Elettronica	1	D104	M4880	Sistemi digitali	2	D104
Basi di dati	2	D102	M2170	Informatica 1	1	D102
	NomeCorso Informatica 1 Sistemi digitali Elettronica	NomeCorso Semestre Informatica 1 1 Sistemi digitali 2 Elettronica 1	NomeCorsoSemestreMatrDocenteInformatica 11D102Sistemi digitali2D104Elettronica1D104	NomeCorsoSemestreMatrDocenteCodiceInformatica 11D102F0410Sistemi digitali2D104F1401Elettronica1D104M4880	NomeCorsoSemestreMatrDocenteCodiceNomeCorsoInformatica 11D102F0410Basi di datiSistemi digitali2D104F1401ElettronicaElettronica1D104M4880Sistemi digitali	NomeCorsoSemestreMatrDocenteCodiceNomeCorsoSemestreInformatica 11D102F0410Basi di dati2Sistemi digitali2D104F1401Elettronica1Elettronica1D104M4880Sistemi digitali2

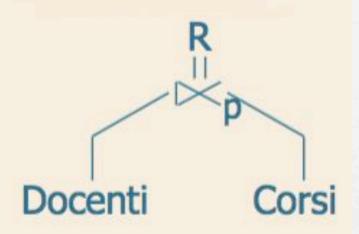
Equi-join: definizione

$$R = A \bowtie_p B$$

• L'equi-join è un caso particolare del theta-join in cui θ è l'operatore di uguaglianza (=).

Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
M2170	Informatica 1	1	D102	D102	Verdi	Informatica
M4880	Sistemi digitali	2	D104	D104	Bianchi	Elettronica
F1401	Elettronica	1	D104	D104	Bianchi	Elettronica
F0410	Basi di dati	2	D102	D102	Verdi	Informatica

Semi-join: definizione e proprietà


$$R = A \bowtie_p B$$

- Il semi-join di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le n-uple di A per cui è vero il predicato p
- Il predicato p è espresso nella stessa forma del thetajoin (confronto fra attributi di A e B)
- Il semi-join può essere espresso in funzione del thetajoin: $A \bowtie_p B = \pi_{\operatorname{schema}(A)} (A \bowtie_p B)$
- Il semi-join **non gode** della proprietà commutativa

Trovare le informazioni relative ai docenti titolari di almeno un corso

R=Docenti ⋈_pCorsi

p: Docenti.MatrDocente=Corsi.MatrDocente

R

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

Si osservi che il semijoin effettua la proiezione dei soli attributi del docente

Docenti

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

	Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
	D102	Verdi	Informatica	M2170	Informatica 1	1	D102
	D102	Verdi	Informatica	M4880	Sistemi digitali	2	D104
	D102	Verdi	Informatica	F1401	Elettronica	1	D104
	D102	Verdi	Informatica	F0410	Basi di dati	2	D102
	D105	Neri	Informatica	M2170	Informatica 1	1	D102
	D105	Neri	Informatica	M4880	Sistemi digitali	2	D104
	D105	Neri	Informatica	F1401	Elettronica	1	D104
	D105	Neri	Informatica	F0410	Basi di dati	2	D102
	D104	Bianchi	Elettronica	M2170	Informatica 1	1	D102
	D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
	D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D	D104	Bianchi	Elettronica	F0410	Basi di dati	2	D102

Corsi. MatrDocente		
D102		
D102		
D104		
D104		

R

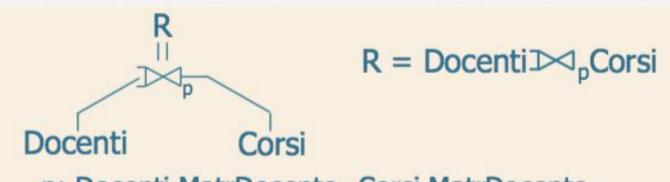
Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento
D102	Verdi	Informatica
D104	Bianchi	Elettronica

Outer-join

Outer-join

- Variante del join che permette di conservare l'informazione relativa alle tuple non semanticamente legate dal predicato di join
 - completa con valori nulli le n-uple prive di controparte
- Esistono tre tipi di outer-join
 - left: sono completate solo le n-uple del primo operando
 - right: sono completate solo le n-uple del secondo operando
 - full: sono completate le n-uple di entrambi gli operandi

Left outer-join: definizione


$$R = A \bowtie_p B$$

- Il left outer-join di due relazioni A e B genera una relazione R
 - \Rightarrow avente come schema l'unione degli schemi di A e di B
 - → contenente le coppie formate da
 - una n-upla di A e una n-upla di B per cui è vero il predicato p
 - una n-upla di A che non è correlata mediante il predicato p a n-uple di B completata con valori nulli per tutti gli attributi di B
- Il left outer-join **non è** commutativo

Left outer-join: esempio

Trovare le informazioni sui docenti e sui corsi che tengono

p: Docenti.MatrDocente=Corsi.MatrDocente

Docenti. MatrDocente	Docenti. NomeDoc	Docenti. Dipartimento	Corsi. Codice	Corsi. NomeCorso	Corsi. Semestre	Corsi. MatrDocente
D102	Verdi	Informatica	M2170	Informatica 1	1	D102
D102	Verdi	Informatica	F0410	Basi di dati	2	D102
D104	Bianchi	Elettronica	M4880	Sistemi digitali	2	D104
D104	Bianchi	Elettronica	F1401	Elettronica	1	D104
D105	Neri	Informatica	null	null	null	null

Right outer-join: definizione

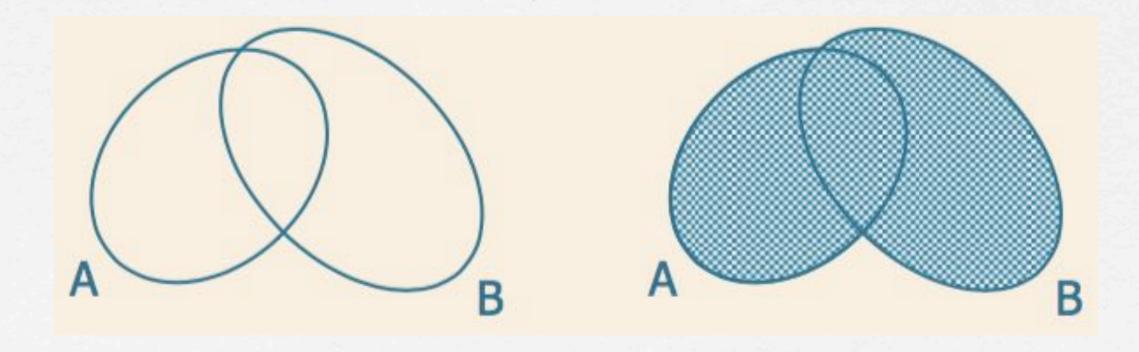
$$R = A \bowtie_{p} B$$

- Il right outer-join di due relazioni A e B genera una relazione R
 - \Rightarrow avente come schema l'unione degli schemi di A e di B
 - → contenente le coppie formate da
 - una n-upla di A e una n-upla di B per cui è vero il predicato p
 - una n-upla di B che non è correlata mediante il predicato p a n-uple di A completata con valori nulli per tutti gli attributi di A
- Il right outer-join non è commutativo

Full outer-join: definizione

$$R = A \bowtie_p B$$

- Il full outer-join di due relazioni A e B genera una relazione R
 - ightharpoonup avente come schema l'unione degli schemi di A e di B
 - → contenente le coppie formate da
 - una n-upla di A e una n-upla di B per cui è vero il predicato p
 - una n-upla di A che non è correlata mediante il predicato p a n-uple di B completata con valori nulli per tutti gli attributi di B
 - una n-upla di B che non è correlata mediante il predicato p a n-uple di A completata con valori nulli per tutti gli attributi di A
- Il full outer-join è commutativo


Unione e intersezione

49

Unione

 L'unione di due relazioni A e B seleziona tutte le n-uple presenti in almeno una delle due relazioni

Unione: definizione e proprietà

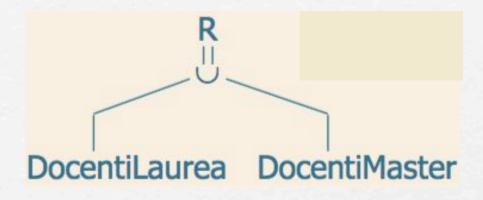
 $R = A \cup B$

- L'unione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le n-uple provenienti da A e da B
- Le due relazioni <u>devono</u> avere lo **stesso schema** (numero e tipo di attributi)
- Le n-uple duplicate sono eliminate
- L'unione è commutativa e associativa

Unione: esempio

Trovare le informazioni relative ai docenti dei corsi di laurea o di master

DocentiLaurea

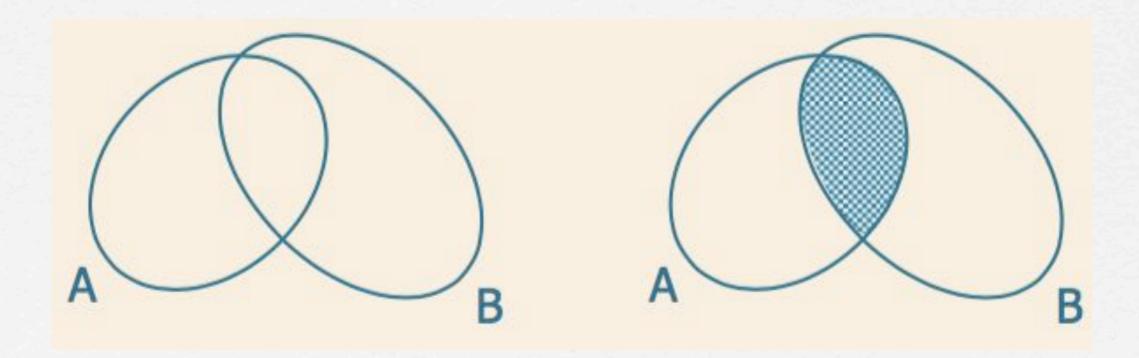

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

N.B. Non vi sono righe duplicate

R = DocentiLaurea ∪ DocentiMaster



R		
MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica
D101	Rossi	Elettrica

Intersezione

• L'intersezione di due relazioni A e B seleziona tutte le n-uple presenti in entrambe le relazioni

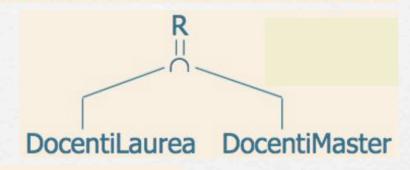
Intersezione: definizione e proprietà

$$R = A \cap B$$

- L'intersezione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente le sole n-uple appartenenti sia ad A che a B
- Le due relazioni <u>devono</u> avere lo **stesso schema** (numero e tipo di attributi)
- L'intersezione è commutativa e associativa

Intersezione: esempio

Trovare le informazioni dei docenti che insegnano sia nei corsi di laurea che nei master

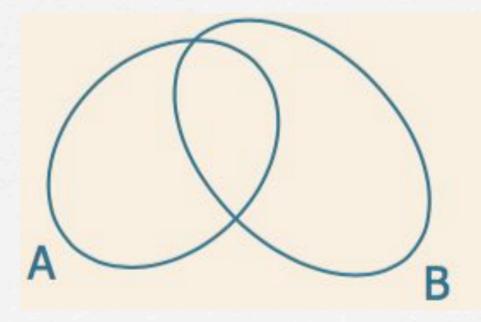

DocentiLaurea

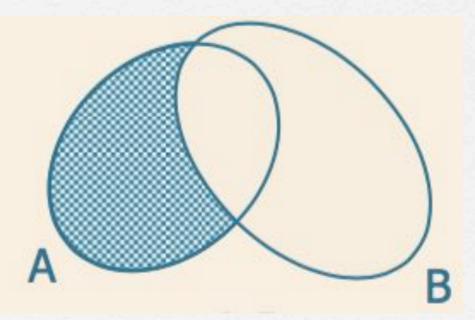
MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

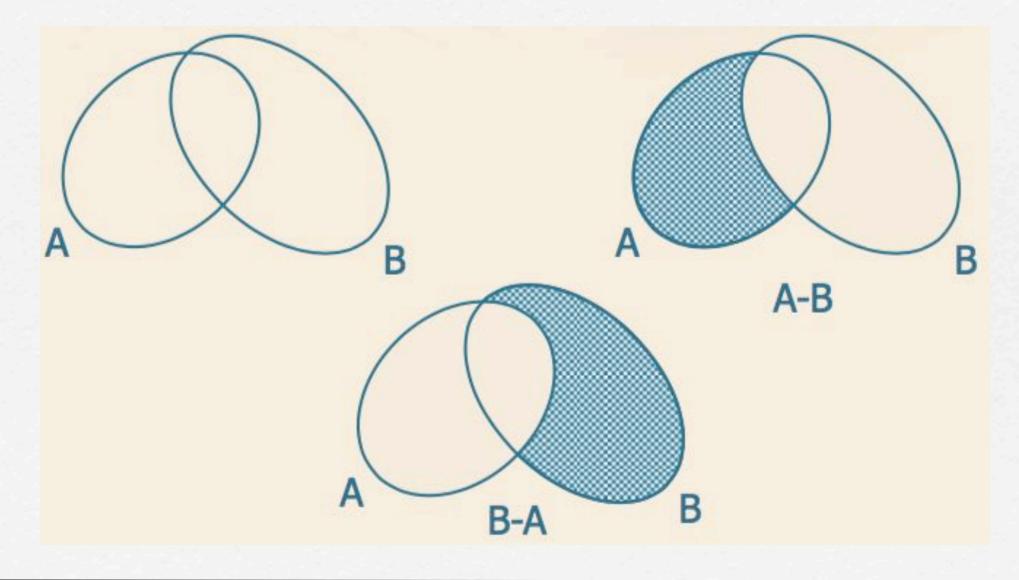
R = DocentiLaurea DocentiMaster




Differenza e anti-join

Differenza

• La **differenza** di due relazioni A e B seleziona tutte le n-uple presenti in A ma non in B



Differenza

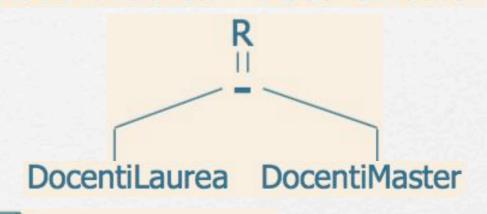
$A-B \neq B-A$

Differenza: definizione e proprietà

$$R = A - B$$

- L'intersezione di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente le n-uple di A che non appartengono a B
- Le due relazioni <u>devono</u> avere lo **stesso schema** (numero e tipo di attributi)
- La differenza **non è** né commutativa né associativa

Trovare le informazioni dei docenti che insegnano nei corsi di laurea ma non nei master


DocentiLaurea

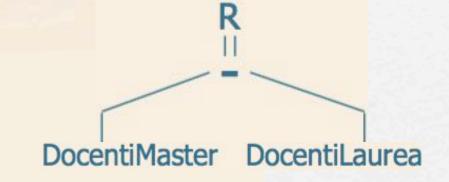
<u>MatrDocente</u>	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D101	Rossi	Elettrica

R = DocentiLaurea - DocentiMaster

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica
D104	Bianchi	Elettronica



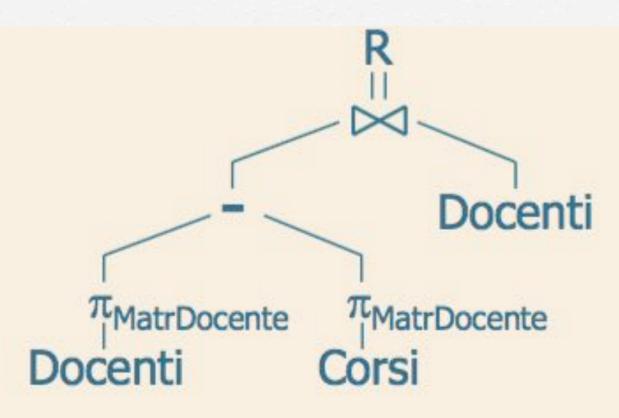
Trovare le informazioni dei docenti che insegnano nei master ma non nei corsi di laurea

R = DocentiMaster - DocentiLaurea

DocentiMaster

	MatrDocente	NomeDoc	Dipartimento
	D102	Verdi	Informatica
1	D101	Rossi	Elettrica

DocentiLaurea


MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

MatrDocente	NomeDoc	Dipartimento
D101	Rossi	Elettrica

Trovare matricola, nome e dipartimento dei docenti che non tengono corsi

R = Docenti \bowtie (($\pi_{MatrDocente}$ Docenti) - ($\pi_{MatrDocente}$ Corsi))

Docenti

Matricole dei docenti

MatrDocenteNomeDocDipartimentoD102VerdiInformaticaD105NeriInformaticaD104BianchiElettronica

Corsi

Codice	NomeCorso	Semestre	MatrDocente
M2170	Informatica 1	1	D102
M4880	Sistemi digitali	2	D104
F1401	Elettronica	1	D104
F0410	Basi di dati	2	D102

Matricole dei docenti che tengono almeno un corso

MatrDocente

D102

D105

D104

MatrDocente

D102

D104

← dalla relazione Docenti

Differenza

MatrDocente

D105

← dalla relazione Corsi

MatrDocente

D105

Docenti

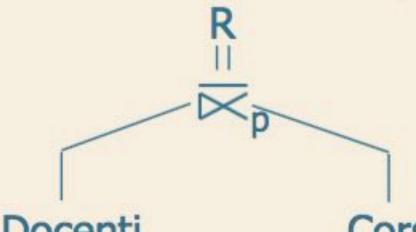
MatrDocente	NomeDoc	Dipartimento
D102	Verdi	Informatica
D105	Neri	Informatica
D104	Bianchi	Elettronica

R

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Natural Join

Anti-join: definizione e proprietà


$$R = A \ltimes_p B$$

- L'anti-join di due relazioni A e B genera una relazione R
 - avente lo stesso schema di A
 - contenente tutte le n-uple di A per cui non esiste nessuna n-upla in B per cui è vero il predicato p
- Il predicato p è espresso nella stessa forma del thetajoin e del semi-join
- L'anti-join non gode né della proprietà commutativa, né della proprietà associativa

Anti-join: esempio

Trovare matricola, nome e dipartimento dei docenti che non tengono corsi

R = Docenti ⊠_pCorsi

Docenti

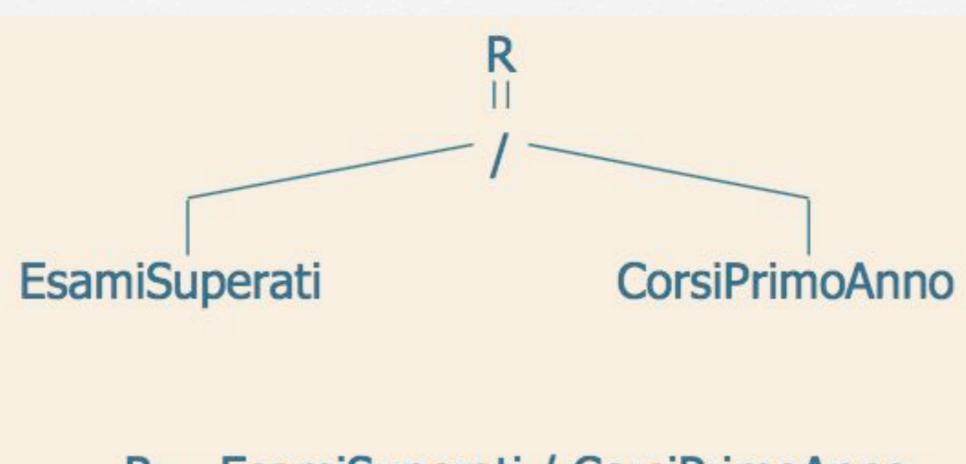
Corsi

p: Docenti.MatrDocente=Corsi.MatrDocente

MatrDocente	NomeDoc	Dipartimento
D105	Neri	Informatica

Divisione e altri operatori

Divisione: definizione e proprietà


$$R = A / B$$

- La divisione della relazione A per la relazione B genera una relazione R
 - avente come schema schema(A) schema(B)
 - contenente tutte le n-uple di A tali che per ogni n-upla (Y:y) presente in B esiste una n-upla (X:x,Y:y) in A
- La divisione non gode né della proprietà commutativa, né della proprietà associativa

Divisione: esempio

Trovare le matricole degli studenti che hanno superato tutti i corsi del 1° anno

Divisione: esempio

EsamiSuperati

MatrStudente	CodCorso	
S1	C1	
<i>S1</i>	C2	
S1	C3	
<i>S1</i>	C4	
S1	C5	
S1	C6	
S2	C1	
S2	C2	
S3	C2	
54	C2	
54	C4	
S4	C5	

CorsiPrimoAnno

CodCorso
C2
C4

R
MatrStudente
S1
S4

Tutti i corsi del primo anno (C2 e C4) sono stati superati dagli studenti con matricola S1 ed S4.

Altri operatori

- Sono stati proposti numerosi altri operatori per estendere il potere espressivo dell'algebra relazionale
 - estensione con un nuovo attributo (calcolato), definito da un'espressione scalare: Peso_Lordo = Peso_Netto+Tara
- Calcolo di funzioni aggregate
 - max, min, avg, count, sum
 - eventualmente con la definizione di sottoinsiemi in cui raggruppare i dati (GROUP BY di SQL)

