

Corso integrato di Sistemi di Elaborazione

Modulo

Prof. Crescenzio Gallo

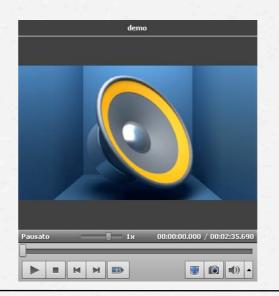
crescenzio.gallo@unifg.it

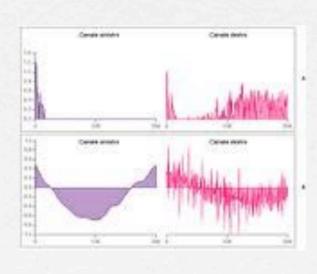
Informazioni multimediali

(immagini, suoni, video)

Informazioni multimediali

Lettere e numeri non costituiscono le uniche informazioni utilizzate dagli elaboratori, ma ci sono sempre più applicazioni che utilizzano ed elaborano anche altri tipi di informazione:


→ diagrammi, immagini, suoni.


In questi casi si parla di applicazioni di tipo *multimediale*.

Abbiamo bisogno di un sistema di CODIFICA.

In generale si parla di DIGITALIZZAZIONE.

La digitalizzazione

Il termine digitale deriva dall'inglese digit (cifra, numero).

Per digitalizzazione si intende la rappresentazione (codifica) di un qualunque fenomeno o oggetto fisico attraverso una sequenza di numeri.

La digitalizzazione consente di rappresentare un qualunque oggetto o fenomeno all'interno della memoria del computer.

Consente ad un calcolatore di interagire, analizzare, modificare le rappresentazioni di tali oggetti.

Esempi di digitalizzazione

Immagine

Codifica

Codifica jpeg

Testo

Il termine word indica, invece, una serie di bit (in numero tale da essere potenza di 2) che hanno un particolare significato; si parla quindi di word di 4, 16, 32 o 64 bit. Normalmente, una word è la dimensione minima di bit su cui un calcolatore può esseguire operazioni elementari; i vecchi PC lavoravano con word di 8 o 16 bit, mentre gli attuali elaboratori hanno word di 64 bit.

In definitiva, se per noi è semplice eseguire calcoli nella forma 12+15 o ricercare la parola "ciao" in un testo, per un elaboratore elettronico è molto più facile sommare 1100 a 1110 (intesi come numeri binari) o cercare la sequenza di bit "01110110111011001101101101101101101" (possibile codifica della parola "ciao") in una serie di un milione di cifre binarie.

4.1.2 Multipli utilizzati

La memoria utilizzata per codificare una pagina di testo è di qualche *migliaio* di byte, quella usata per una immagine può raggiungere il *milione* di byte, mentre un lungo filmato può richiedere *miliardi* di byte per essere memorizzato.

Si avverte la necessità, come nel sistema metrico decimale, di utilizzare dei simboli per rappresentare i multipli delle grandezze elementari; nella terminologia informatica sono stati quindi adottati gli stessi simboli del sistema decimale, ma visto che la misurazione della memoria ha come sua base principale il 2, il loro significato è leggermente diverso.

La seguente tabella riassume i simboli e i valori dei multipli più usati in campo informatico:

Codifica ASCII

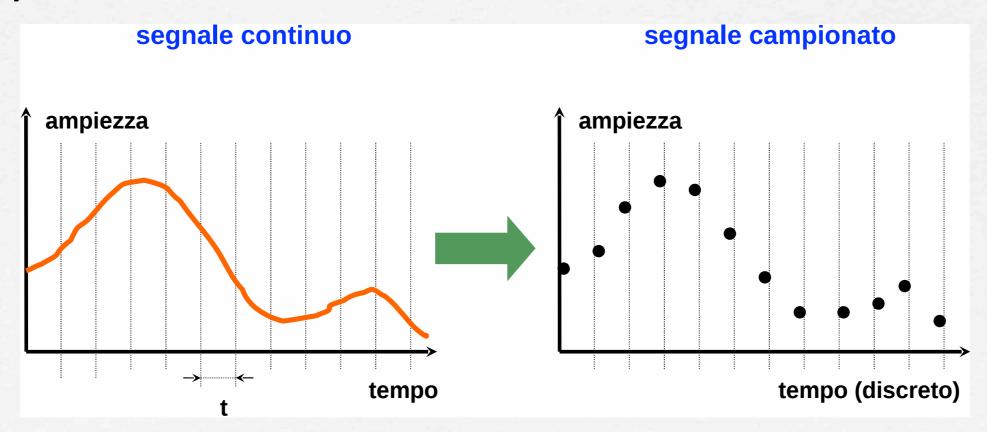
Codifica

Conversione analogico-digitale

La conversione analogico-digitale trasforma un segnale analogico (valori continui in un tempo continuo) in segnale numerico (valori discreti in tempo discreto).

Questa operazione è costituita da tre fasi:

- Campionamento
- Quantizzazione
- Codifica



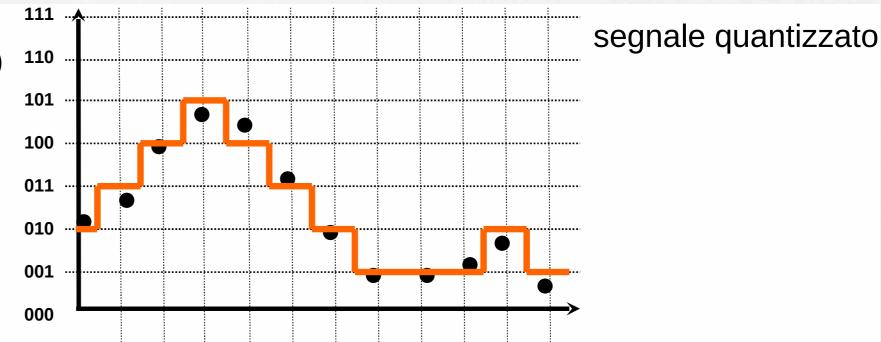
Campionamento

Il **campionamento** è una tecnica di rappresentazione del segnale che consiste nella valutazione dell'ampiezza dello stesso ad intervalli di tempo regolari.

L'accuratezza di un campionamento dipende essenzialmente dalla **frequenza** di campionamento che è il numero di campioni rilevato nell'unità di tempo.

Esempio:

Quantizzazione/Codifica


- ▶ In natura, la maggior parte delle grandezze possono assumere un insieme infinito e continuo di valori.
- ▶ Affinché una grandezza sia trasmissibile e codificabile con un numero finito di bit, è però necessario far sì che possa assumere solo un numero finito di valori discreti; ciò avviene tramite la **quantizzazione**.
- ▶ Un quantizzatore associa ad ognuno dei valori continui in ingresso il più prossimo tra quelli definiti.
- ▶ L'errore di quantizzazione è definito come la differenza tra due valori numerici successivi.

Esempio:

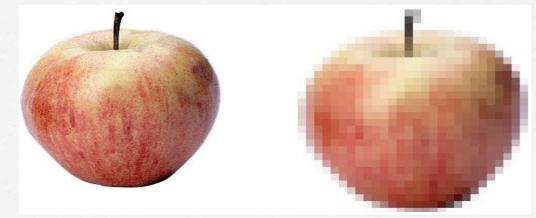
Ampiezza (discreta e codificata)

Codifica a 3 bit

L'operazione di codifica trasforma i valori numerici forniti dal quantizzatore in cifre binarie.

Tempo (discreto)

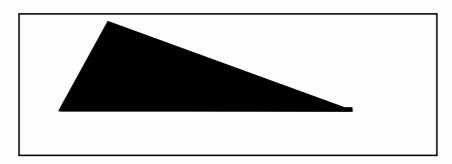
Rappresentazione delle immagini

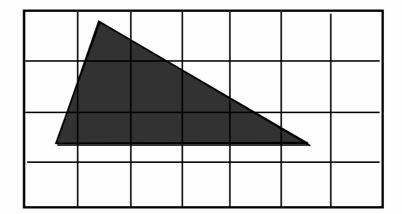


Rappresentazione delle immagini

Le forme e i colori presenti nelle immagini sono grandezze di tipo continuo. È necessario rappresentare tale grandezze in maniera discreta. Nel caso delle immagini non è presente la dimensione temporale (come nel suono).

- ▶ Una maniera immediata per rappresentare un immagine è quella di suddividerla in un insieme di piccoli quadratini (pixel) e di memorizzare l'informazione relativa al colore presente nel quadratino.
- Ogni quadratino rappresenta appunto un pezzettino dell'immagine.

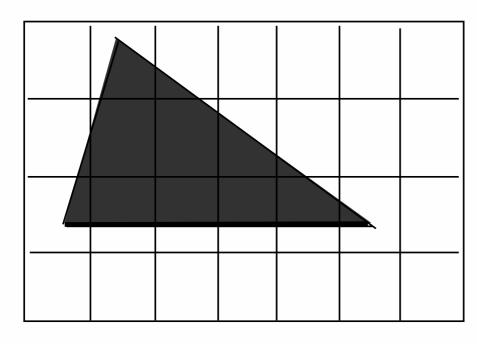

Questo tipo di codifica delle immagini viene detto bitmap o raster (dal latino rastrum, rastrello) ad indicare il campionamento sistematico dell'immagine per mezzo dell'insieme di pixel che la rappresentano.



Un esempio di codifica

Caso più semplice: immagini in bianco e nero senza livelli di grigio

Suddividiamo l'immagine mediante un insieme di quadratini di dimensioni costante (campionamento dell'immagine)

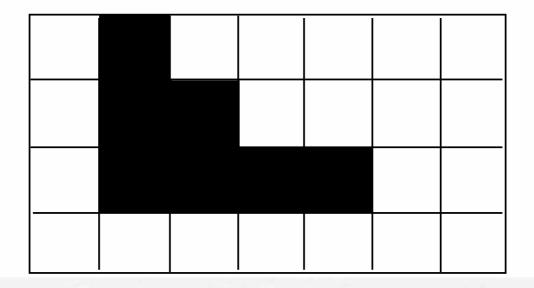

Assumiamo che un pixel sia codificato con un singolo bit che vale

- 0 se nel pixel il *bianco* è predominante
- 1 se nel pixel il *nero* è predominante

Un esempio di codifica

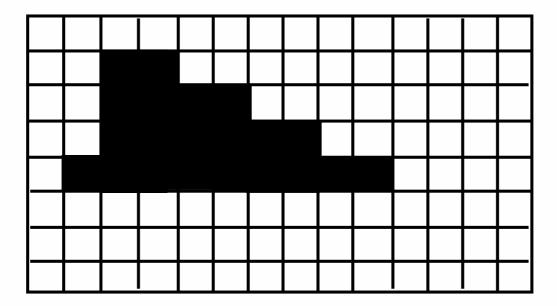
Poiché una sequenza di bit è lineare, è necessario definire delle convenzioni per ordinare la griglia dei pixel in una sequenza. Assumiamo che i pixel siano ordinati dal basso verso l'alto e da sinistra verso destra

0	1	0	0	0	0	0
22	23	24	25	26	27	28
0	1	1	0	0	0	0
15	16	17	18	19	20	21
0	1	1	1	1	0	0
- 8	9	10	11	12	13	14
0	0	0	0	0	0	0
1	2	3	4	5	6	7


Con questa convenzione la rappresentazione della figura sarà data dalla stringa binaria

0000000 0111100 0110000 0100000

Risoluzione


- Non sempre il contorno della figura coincide con le linee della griglia. Quella che si ottiene nella codifica è un'approssimazione della figura originaria
- Se riconvertiamo la stringa 000000011110001100000100000 in immagine otteniamo

Risoluzione

La rappresentazione sarà più fedele all'aumentare del numero di pixel, ossia al diminuire delle dimensioni dei quadratini della griglia in cui è suddivisa l'immagine:

Il numero di pixel in cui è suddivisa un immagine si chiama *risoluzione* e si esprime con una coppia di numeri ad es. 640×480 pixel (orizzontali \times per verticali)

Codifica dei livelli di grigio

Per ogni pixel viene misurato il livello medio di intensità luminosa (il *livello di grigio*): ogni pixel è codificato con un numero di bit > 1.

Ad esempio:

- se utilizziamo quattro bit possiamo rappresentare 24=16 livelli di grigio
- se utilizziamo otto bit ne possiamo distinguere 2⁸=256, etc.

Confronto tra una immagine a 32 bit ed una a 2 bit

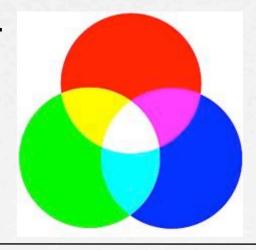
Codifica di immagini a colori

- Analogamente possiamo codificare le immagini a colori. In questo caso si tratta di individuare un certo numero di sfumature di colore differenti e di codificare ogni sfumatura mediante un'opportuna sequenza di bit.
- Ad esempio, i monitor utilizzano **risoluzioni** di 640×480 (VGA), 1024×768 (XGA), oppure 1280×1024 (SXGA) ed un numero di colori per pixel che va da 256 (8 bit) fino a sedici milioni (24 bit).
- ► Il numero di bit usato per codificare i colori è detto profondità dell'immagine.

Codifica di immagini a colori

La rappresentazione di un'immagine mediante la codifica dei pixel, viene chiamata codifica bitmap.

Il numero di byte richiesti dipende dalla <u>risoluzione</u> e dal <u>numero di colori</u> che ogni pixel può assumere.

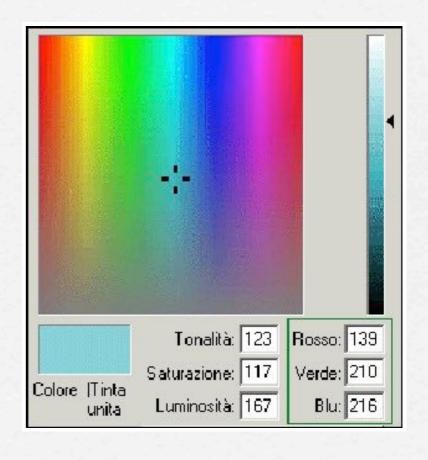

Per distinguere 256 colori sono necessari otto bit per la codifica di ciascun pixel: la codifica di un'immagine formata da 640×480 pixel richiederà 2.457.600 bit (307.200 byte).

La codifica RGB

- Come è possibile rappresentare l'infinità di colori presenti in natura?
- Un possibile modello di rappresentazione è noto con il nome di RGB (Red, Green, Blue), il quale usa questi tre colori primari per rappresentare tutti i possibili colori.
- Nella codifica RGB ogni pixel è rappresentato da una combinazione di tre numeri, ognuno rappresentante una diversa gradazione di uno dei colori primari.
- Con 8 bit per colore otteniamo: 256 x 256 x 256 = 16.777.216 colori diversi.
- Per ogni pixel sono quindi richiesti 3 byte (24 bit di *profondità*).

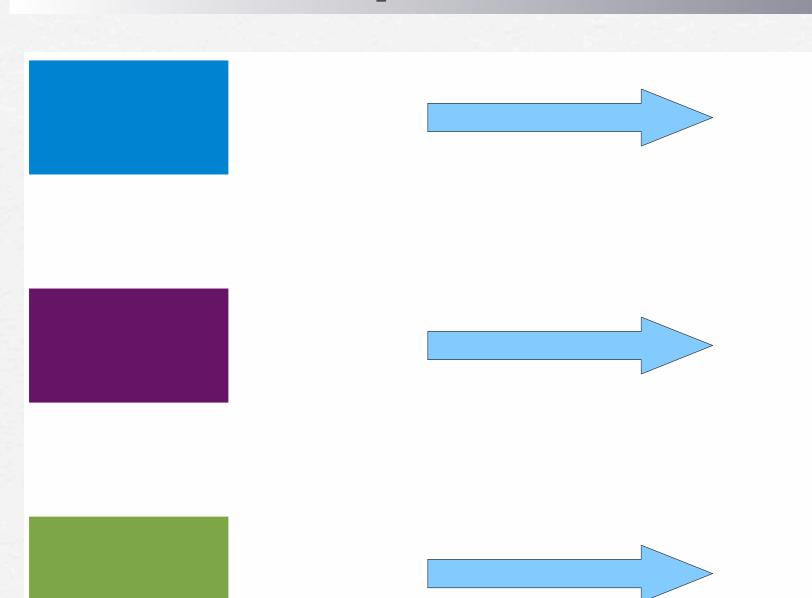
Esempio di codifica RGB

La sfumatura di azzurro è determinata da una certa combinazione di RGB.


Le sequenze di bit sono espresse in base decimale.

Ogni sfumatura di colore primario è rappresentabile da 1 byte:

$$139_{10} \Rightarrow 10001011_2$$


$$210_{10} \Rightarrow 11010010_2$$

$$216_{10} \Rightarrow 10100111_2$$

Altri esempi di codifica RGB

R G B 0 132 209

R G B 102 0 102

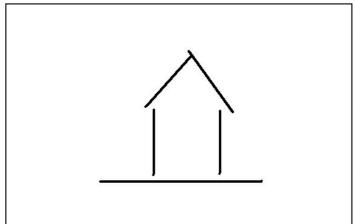
R G B 125 166 71

Compressione delle immagini

Tecniche di compressione

Esistono tecniche di compressione per ridurre lo spazio occupato dalle immagini. Queste tecniche sfruttano le regolarità delle immagini.

- * Compressione senza perdita di informazione (sono dette loss-less): si memorizzano pixel vicini identici una volta sola e si ricorda quante volte occorrono nell'immagine.
- * Compressione con perdita di informazione (sono dette lossy): non si memorizzano tutti i pixel, ma solo una frazione di essi. Si usano funzioni matematiche di interpolazione per ricostruire i pixel mancanti.


La compressione loss-less

Esempio di compressione

Immagine1.bmp (2.63 MB)

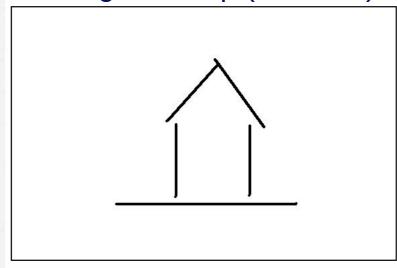
Immagine2.bmp (2.63 MB)

DOMANDA Qual è l'immagine che può essere compressa di più?

La compressione loss-less

Immagine1.bmp (2.63 MB)

Il fattore di compressione è pari al 71%


Immagine1.zip (1.876 MB)

La compressione loss-less

Immagine2.bmp (2.63 MB)

Il fattore di compressione è pari al 0.3%!

Immagine2.zip (5 KB)

Formati standard

GIF (*Graphic Interchange Format*, brevettato da Unisys) utilizza 8 bit per pixel e quindi distingue 256 colori. Usa una tecnica di <u>compressione senza perdita</u> (algoritmo LZW).

JPEG (*Joint Photographic Expert Group*) utilizza 24 bit, quindi 16,8 milioni di colori. Usa una tecnica sofisticata di compressione con perdita.

Altri formati senza perdita sono **PNG** (*Portable Network Graphics*, algoritmo zlib) e **TIFF** (*Tagged Image File Format*).

Formato JPEG

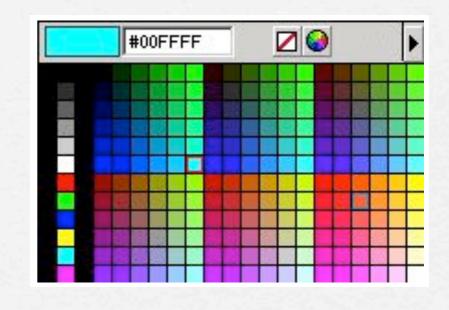
- ► Lo standard JPEG (Joint Photographic Expert Group) è aperto ed è stato sviluppato da un gruppo di esperti di fotografia ed utilizza 8 bit per pixel.
- Lo scopo dello standard è quello di comprimere immagini di tipo fotografico minimizzando la perdita di informazione al quale l'occhio umano è più sensibile.
- Quando un immagine BMP viene trasformata in una JPEG, il reticolo di pixel dell'immagine JPEG viene suddiviso in blocchi di dimensione 8x8.
- Ogni blocco 8x8 viene poi rappresentato con dei valori medi.
- Lo standard prevede diversi livelli di compressione.

Maggiore è la compressione, minore sarà la qualità dell'immagine

Formato GIF

- ► Il formato GIF (Graphic Interchange Format) riduce l'occupazione su disco di un'immagine limitando il numero di colori che compaiono in essa.
- Vengono scelti quelli più frequenti, alcune sfumature vengono perse e sostituite dalle sfumature più vicine fra quelle mantenute.
- Più si limita il numero di colori più l'immagine sarà piccola; il numero può andare da un minimo di 2 ad un massimo di 256.
- L'insieme dei colori utilizzati viene salvato insieme all'immagine come palette di colori.
- ► Il formato GIF è adatto ad immagini geometriche, possibilmente con un numero di colori non elevato.

La tavolozza dei colori


Nella maggior parte delle immagini sono presenti un numero ridotto di colori.

Questo fatto può essere sfruttato per costruire una tavolozza dei colori (*colour palette*).

Questa tavolozza non è altro che un elenco dei colori presenti nell'immagine.

Questo può portare ad un notevole risparmio di spazio.

Ad esempio: se la tavolozza contiene 256 colori, posso utilizzare un byte per codificare i colori, ottenendo così un fattore di compressione pari a 3.

Formati standard: un esempio

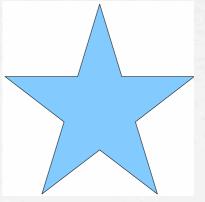
Formato gif 93K

Formato jpeg 30K

Grafica vettoriale

La grafica vettoriale

- Nella grafica vettoriale le immagini sono rappresentate per mezzo di primitive geometriche.
- Esempi di queste primitive sono: segmenti, curve, poligoni, cerchi, ellissi.
- Queste primitive sono a loro volta rappresentate per mezzo di equazioni matematiche.

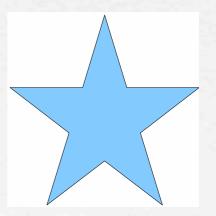

Esempio

- Un oggetto di tipo circolare può essere rappresentato specificando le coordinate del centro e il suo raggio.
- Ogni oggetto possiede inoltre un insieme di attributi che ne specificano il colore, il riempimento, il bordo etc.

La grafica vettoriale

Vantaggi

- Gli oggetti presenti in un'immagine possono essere modificati (ruotati, allungati, etc.) in maniera immediata per mezzo di semplici operatori matematici.
- Un immagine può essere rappresentata in maniera compatta specificando solo le proprietà degli oggetti presenti.
- È indipendente dalla risoluzione.


Svantaggi

- La visualizzazione delle immagini richiede l'uso di software complessi in grado di risolvere le equazioni associate alle primitive per tracciare i punti (pixel) che le soddisfano.
- Per immagini molto complesse può essere necessario l'uso di computer molto potenti.

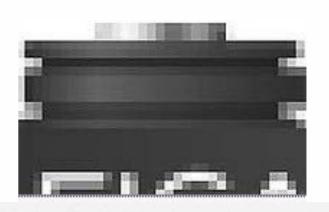
Formati vettoriali

- ► CDR (il formato di CorelDraw)
- ▶ **SWF** (ShockWave Flash, il formato di Macromedia Flash, utilizzato per la creazione di animazioni destinate al web. Richiede il plug-in Flash Player; in via di sostituzione con lo standard HTML5)
- ▶ **SVG** (Scalable Vector Graphics, formato standard del W3 Consortium, creato nel 1999, è visualizzabile dai browsers ma necessita del plug-in Adobe SVG Viewer. Come il formato di Flash, permette di creare delle animazioni. Si basa sul linguaggio XML)
- ▶ **DWG** (Drawing, formato Autocad di Autodesk)
- ▶ **WMF** (Windows Meta File, il formato degli oggetti Clipart di Office)

Formati ibridi (possono essere usati sia per le immagini vettoriali che raster):

- ▶ **EPS** (Encapsulated Postscript, utilizzato nel campo della stampa professionale)
- ▶ **PDF** (Portable Document Format. E' il formato visualizzabile con Adobe Acrobat Reader)
- ▶ **PSD** (il formato di Adobe Photoshop)

Confronto vettoriale-raster


Immagine originale

Ingradimento vettoriale

Ingradimento raster

Effetti

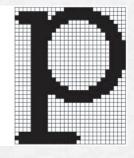
Il ray tracing è una particolare tecnica di ombreggiatura.

Il texture-mapping è un processo che consiste nell'applicare ad una superficie vettoriale un'immagine bitmap.

L'anti-aliasing ammorbidisce i contorni di un oggetto (aliasing = scalettatura).

Font scalabili

Tipi di carattere e font


Un font è un insieme di caratteri e simboli creati in base a un particolare modello (tipo di carattere). La scelta dei tipi di carattere più consoni alle varie parti di un documento facilita la lettura di quest'ultimo.

Font bitmap e font scalabili

Le stampanti utilizzano sia font scalabili che font bitmap.

I font bitmap vengono memorizzati come modelli di bit predefiniti che rappresentano un tipo di carattere con dimensione, stile e risoluzione specifici.

I font scalabili (chiamati anche font outline) sono gestiti da un programma detto "rasterizzatore" e sono memorizzati come programmi (serie di formule) che definiscono i profili dei caratteri di un font. Ogni volta che si stampano dei caratteri di un font scalabile, la stampante crea una bitmap dei caratteri con la dimensione in punti selezionata e la salva temporaneamente nella memoria.

I formati audio

Digitalizzazione audio

- ▶ Un suono digitalizzato con qualità CD-DA viene campionato a 44, I KHz su 16 bit (2 canali stereo).
- I formati audio si dividono in lossy (con perdita) e no lossy (o lossless, senza perdita di qualità).
- L'idea dei formati lossy (i più diffusi tra gli utenti comuni) nasce dall'idea che non tutti i suoni presenti nei 44.100 campioni al secondo contenuti in un file WAV standard vengono correttamente percepiti dall'orecchio umano.

Digitalizzazione audio

- In questo modo (così come avviene per il JPEG delle immagini) si vanno a tagliare le alte frequenze, che si ritiene siano meno distinte dal nostro orecchio.
- ▶ Più si tagliano queste frequenze, più lo spazio occupato dalla nostra traccia diminuisce ma diminuisce anche la qualità del risultato.
- I formati senza perdita (**lossless**, come ad es. WAV) invece cercano di diminuire lo spazio occupato dalla traccia senza andare a toccare il suono; la percentuale di compressione sarà decisamente inferiore rispetto ai lossy, ma non ci sarà perdita di qualità.
- Se riconvertito da WAV (magari per essere elaborato), il suono sarà identico all'originale.

Digitalizzazione audio

- Lo standard **MIDI** (Musical Instrument Digital Interface) viene utilizzato per uniformare le comunicazioni tra gli elaboratori e gli strumenti musicali elettronici.
- WAV (contrazione di WAVEform) è un formato audio sviluppato da Microsoft e IBM per personal computer IBM compatibili:
 - È una variante del formato RIFF(*) di memorizzazione dei dati.
 - I dati vengono salvati in "chunk" (blocchi).
 - È simile anche al formato AIFF (+) utilizzato dai computer Apple Mac.

^(*) RIFF = Resource Image File Format, una specifica Microsoft per la memorizzazione di file multimediali.

⁽⁺⁾ AIFF = \underline{A} udio \underline{I} nterchange \underline{F} ile \underline{F} ormat

Formato MP3

- Il formato MP3 usa una compressione con perdita di informazioni.
- MP3 (noto anche come MPEG Audio Layer III) è un algoritmo di compressione audio di tipo lossy, sviluppato dal gruppo MPEG (Motion Picture Expert Group), in grado di ridurre drasticamente la quantità di dati richiesti per memorizzare un suono, rimanendo comunque una riproduzione accettabilmente fedele del file originale non compresso.
- Il *bitrate* per un file in formato MP3 indica il numero medio di bit per un secondo di dati audio. Tipicamente minimo 128 Kbps per una qualità accettabile.

Formato AAC

- Il formato Advanced Audio Coding (AAC) è un formato di compressione audio creato dal consorzio MPEG e incluso ufficialmente nell'MPEG-4. L'AAC fornisce una qualità audio superiore al formato MP3 mantenendo la stessa dimensione di compressione.
- Attualmente viene utilizzato principalmente da **Apple** nei suoi prodotti dedicati all'audio (*iTunes*); difatti Apple usa sia una variante dell'AAC che gestisce i diritti d'autore DRM (AAC Protected), con compressione a 128 Kbps, sia una versione senza protezione (AAC Plus), con compressione a 256 Kbps.
- L'AAC è diventato recentemente il formato standard di audio per le console PlayStation 3, Nintendo DSi e Wii.

Formati AC3, Real

AC3. E' il formato audio usato dai DVD. In genere lo troviamo a 384 kbps (e 6 canali), ma è possibile anche averlo in soli 2 canali e a bitrate inferiori. Uno dei programmi gratuiti che lo supporta (e che consente per esempio di ridurre il bitrate) è BeLight.

Real Player (.ra, .rm e altre estensioni simili). Codec molto usato in certi video e in certi audio. RealPlayer è un programma gratuito (con certi limiti...) che consente di eseguire tracce audio e video create con il suo codec.

Una valida alternativa, davvero gratuita, a Real Player è rappresentata dal programma Real Alternative (solo Windows) o - molto meglio - **VLC** (Video Lan Controller), un player ed un framework multimediale multi-piattaforma gratuito e open-source che riproduce moltissimi file multimediali così come DVD, CD audio, VCD e diversi protocolli di trasmissione.

Immagini in movimento

Immagini in movimento

- Memorizzazione mediante sequenze di fotogrammi.
- La qualità della memorizzazione dipende dal numero di fotogrammi al secondo.

Esempio:

- le immagini televisive vengono trasmesse con 25 fotogrammi al secondo
- poniamo di avere una risoluzione di 1024×768, in formato JPEG
- se ogni immagine è 200 Kbyte, dieci minuti di filmato occupano 3 Gbyte

Compressione immagini in movimento

Problema dell'occupazione di spazio: per ottimizzare lo spazio non si memorizzano tutti i fotogrammi.

I fotogrammi variano in modo continuo: si memorizza un primo fotogramma in modo completo, e per i successivi N solo le differenze con il primo (compressione **inter-fotogramma**).

Anche il singolo fotogramma completo viene compresso (come un'immagine) per ridurne l'occupazione (compressione intra-fotogramma).

I film su DVD usano la compressione MPEG-2.

Codec video

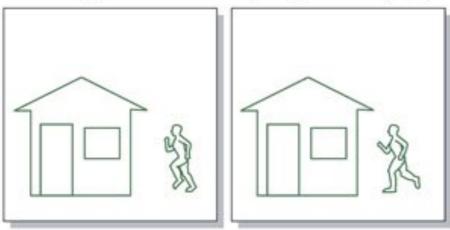
Il processo di compressione consiste nell'applicare un algoritmo al video di origine allo scopo di creare un file compresso pronto per la trasmissione o la memorizzazione.

Al momento della riproduzione del file compresso, viene invece applicato un algoritmo inverso che genera un video contenente praticamente lo stesso contenuto del video originale.

Il tempo richiesto per comprimere, trasmettere, decomprimere e visualizzare un file rappresenta la cosiddetta **latenza**. Più avanzato è l'algoritmo di compressione, più alta è la latenza.

Una coppia di algoritmi utilizzata contemporaneamente rappresenta un codec (codificatore/decodificatore) video.

I codec video di standard diversi non sono generalmente compatibili tra loro, il che significa che il video compresso con uno standard non può essere normalmente decompresso usando un altro standard.


Ad esempio, un decodificatore che supporta lo standard MPEG-4 non può essere utilizzato con un codificatore che supporta lo standard H.264, semplicemente perché uno dei due algoritmi non è in grado di decodificare l'output dell'altro algoritmo correttamente; tuttavia, è possibile implementare più algoritmi nello stesso software o hardware e consentire la coesistenza di più formati.

Confronto tra compressione delle immagini e compressione video

- I vari standard di compressione utilizzano metodi diversi per ridurre i dati e offrono, quindi, velocità di trasmissione in bit, qualità e latenze diverse.
- Gli algoritmi di compressione si suddividono in due tipi: compressione delle immagini e compressione video.
- La compressione delle immagini utilizza la tecnologia di codifica intra-fotogramma. I dati vengono ridotti all'interno di un fotogramma immagine semplicemente rimuovendo le informazioni non necessarie che potrebbero essere non visibili all'occhio umano.
- Motion JPEG (MPEG) è un tipico esempio di standard di compressione di questo tipo. In una sequenza Motion JPEG le immagini sono codificate o compresse come singole immagini JPEG.

Nel formato Motion JPEG le tre immagini della sequenza mostrata vengono codificate e trasmesse come immagini univoche distinte (fotogrammi di tipo I) senza dipendenze tra loro.

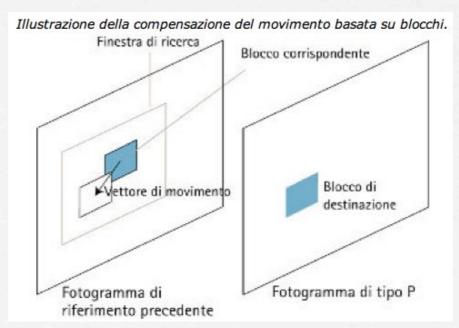
Compressione inter-fotogramma

Gli algoritmi di compressione di video, quali MPEG-4 e H.264, utilizzano la predizione interfotogramma per ridurre i dati video tra una serie di fotogrammi.

Ciò implica tecniche come ad esempio la codifica differenziale, dove ciascun fotogramma viene confrontato con quello di riferimento e vengono codificati solo i pixel modificati rispetto al fotogramma di riferimento.

Pertanto, il numero dei valori dei pixel codificati e trasmessi risulta significativamente ridotto. Quando si visualizza una sequenza codificata di questo tipo, le immagini vengono riprodotte come nella sequenza video originale.

Nella codifica differenziale, viene codificata interamente solo la prima immagine (fotogramma di tipo I). Per le due immagini successive (fotogrammi di tipo P), vengono stabiliti dei collegamenti agli elementi statici della prima immagine, come la casa. Solo gli oggetti in movimento, come l'uomo che corre, vengono codificati usando vettori di movimento, in modo da ridurre la quantità di informazioni trasmesse e memorizzate.

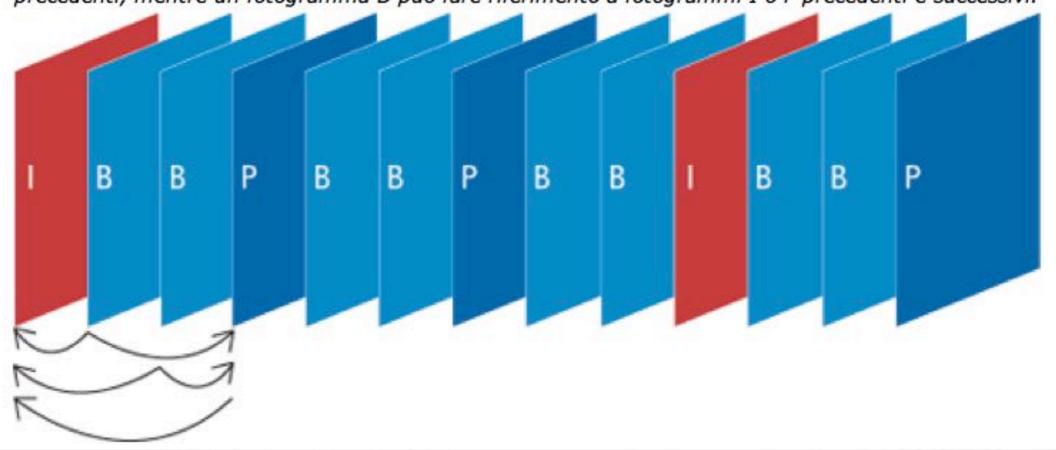

Compensazione del movimento basata su blocchi

Per ridurre ulteriormente i dati, è possibile utilizzare altre tecniche come la compensazione del movimento basata su blocchi.

Questa tecnica individua la parte di un nuovo fotogramma di una sequenza video che corrisponde a quella di un fotogramma precedente, anche se riferito a una posizione diversa, e divide il fotogramma in una serie di macroblocchi (blocchi di pixel).

Ciò consente di creare o "prevedere", blocco dopo blocco, un nuovo fotogramma, ricercando un blocco corrispondente in un fotogramma di riferimento.

Se si rileva una corrispondenza, il codificatore codifica la posizione in cui si trova il blocco corrispondente all'interno del fotogramma di riferimento. La cosiddetta codifica del vettore di movimento richiede una quantità inferiore di bit rispetto alla codifica del contenuto effettivo del blocco.


Fotogrammi di tipo I, P o B

- Con la predizione inter-fotogramma, ciascun fotogramma di una sequenza di immagini viene classificato come un determinato tipo di fotogramma, ad esempio I, P o B.
- Un fotogramma di tipo I o intra-fotrogramma è un fotogramma a sé stante che può essere decodificato in modo indipendente senza fare riferimento ad altre immagini. La prima immagine di una sequenza video è sempre rappresentata da un fotogramma di tipo I. Questo tipo di fotogrammi viene usato come punto iniziale per i nuovi visualizzatori o come punto di risincronizzazione nel caso in cui il flusso in bit trasmesso risulti danneggiato. I fotogrammi di tipo I possono essere usati anche per le funzioni di avanzamento veloce, il riavvolgimento e altre funzioni di accesso. I codificatori inseriscono automaticamente fotogrammi di tipo I a intervalli regolari o su richiesta, se il flusso video deve essere visualizzato su nuovi client. Lo svantaggio di questo tipo di fotogrammi è rappresentato dal fatto che richiedono una maggiore quantità di bit, ma non producono molti artefatti, causati da dati mancanti.
- I fotogrammi di tipo P, che sta per inter-fotogramma "predittivo", fa riferimento al cambiamento a sezioni di fotogrammi I e/o P precedenti per codificare il fotogramma. Questo tipo di fotogramma richiede generalmente una quantità inferiore di bit rispetto ai fotogrammi di tipo I, ma in compenso è molto sensibile agli errori di trasmissione a causa della stretta dipendenza dai fotogrammi P e/o I precedenti.
- Un **fotogramma di tipo B**, o inter-fotogramma "bi-predittivo", fa riferimento sia a un fotogramma precedente che a un fotogramma successivo. L'uso di fotogrammi di tipo B aumenta la latenza.

Fotogrammi di tipo I, P o B

Sequenza tipica con fotogrammi I, B e P. Un fotogramma P può fare riferimento solo a fotogrammi I o P precedenti, mentre un fotogramma B può fare riferimento a fotogrammi I o P precedenti e successivi.

Quando un decodificatore video ripristina il video decodificando il flusso di bit un fotogramma alla volta, la **decodifica** deve sempre iniziare con un fotogramma di tipo I.

I fotogrammi di tipo P e B, se utilizzati, devono essere decodificati insieme ai fotogrammi di riferimento.

